© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9a51
L9a51
L9a53
L9a53
L9a52
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L9a52

Visit L9a52's page at Knotilus!

Acknowledgement

L9a52 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X16,11,17,12 X14,8,15,7 X8,14,9,13 X18,15,13,16 X12,17,5,18 X2536 X4,9,1,10

Gauss Code: {{1, -8, 2, -9}, {5, -4, 6, -3, 7, -6}, {8, -1, 4, -5, 9, -2, 3, -7}}

Jones Polynomial: - q-8 + 3q-7 - 5q-6 + 8q-5 - 7q-4 + 9q-3 - 7q-2 + 5q-1 - 2 + q

A2 (sl(3)) Invariant: - q-26 - q-24 + 2q-22 + 2q-18 + 5q-16 + 3q-14 + 6q-12 + 3q-10 + 3q-8 + 2q-6 - q-4 + 3q-2 + q4

HOMFLY-PT Polynomial: 1 + z2 + a2z-2 + a2 - a2z4 - 2a4z-2 - 4a4 - 4a4z2 - 2a4z4 + a6z-2 + 3a6 + 3a6z2 - a8

Kauffman Polynomial: 1 - 2z2 + z4 - 2az3 + 2az5 + a2z-2 - 3a2 + 3a2z2 - 3a2z4 + 3a2z6 - 2a3z-1 + 5a3z - a3z3 - 2a3z5 + 3a3z7 + 2a4z-2 - 10a4 + 20a4z2 - 19a4z4 + 7a4z6 + a4z8 - 2a5z-1 + 7a5z - 2a5z3 - 8a5z5 + 6a5z7 + a6z-2 - 9a6 + 20a6z2 - 22a6z4 + 7a6z6 + a6z8 + 3a7z - 5a7z3 - 3a7z5 + 3a7z7 - 2a8 + 5a8z2 - 7a8z4 + 3a8z6 + a9z - 2a9z3 + a9z5

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 3         1
j = 1        1 
j = -1       41 
j = -3      53  
j = -5     42   
j = -7    35    
j = -9   54     
j = -11  25      
j = -13 13       
j = -15 2        
j = -171         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[9, Alternating, 52]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, Alternating, 52]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[16, 11, 17, 12], X[14, 8, 15, 7], 
 
>   X[8, 14, 9, 13], X[18, 15, 13, 16], X[12, 17, 5, 18], X[2, 5, 3, 6], 
 
>   X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -8, 2, -9}, {5, -4, 6, -3, 7, -6}, {8, -1, 4, -5, 9, -2, 3, -7}]
In[6]:=
Jones[L][q]
Out[6]=   
      -8   3    5    8    7    9    7    5
-2 - q   + -- - -- + -- - -- + -- - -- + - + q
            7    6    5    4    3    2   q
           q    q    q    q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -26    -24    2     2     5     3     6     3    3    2     -4   3     4
-q    - q    + --- + --- + --- + --- + --- + --- + -- + -- - q   + -- + q
                22    18    16    14    12    10    8    6          2
               q     q     q     q     q     q     q    q          q
In[8]:=
HOMFLYPT[Link[9, Alternating, 52]][a, z]
Out[8]=   
                             2      4    6
     2      4      6    8   a    2 a    a     2      4  2      6  2    2  4
1 + a  - 4 a  + 3 a  - a  + -- - ---- + -- + z  - 4 a  z  + 3 a  z  - a  z  - 
                             2     2     2
                            z     z     z
 
       4  4
>   2 a  z
In[9]:=
Kauffman[Link[9, Alternating, 52]][a, z]
Out[9]=   
                                  2      4    6      3      5
       2       4      6      8   a    2 a    a    2 a    2 a       3
1 - 3 a  - 10 a  - 9 a  - 2 a  + -- + ---- + -- - ---- - ---- + 5 a  z + 
                                  2     2     2    z      z
                                 z     z     z
 
       5        7      9        2      2  2       4  2       6  2      8  2
>   7 a  z + 3 a  z + a  z - 2 z  + 3 a  z  + 20 a  z  + 20 a  z  + 5 a  z  - 
 
         3    3  3      5  3      7  3      9  3    4      2  4       4  4
>   2 a z  - a  z  - 2 a  z  - 5 a  z  - 2 a  z  + z  - 3 a  z  - 19 a  z  - 
 
        6  4      8  4        5      3  5      5  5      7  5    9  5
>   22 a  z  - 7 a  z  + 2 a z  - 2 a  z  - 8 a  z  - 3 a  z  + a  z  + 
 
       2  6      4  6      6  6      8  6      3  7      5  7      7  7
>   3 a  z  + 7 a  z  + 7 a  z  + 3 a  z  + 3 a  z  + 6 a  z  + 3 a  z  + 
 
     4  8    6  8
>   a  z  + a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
3    4     1        2        1        3        2        5        5       4
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 3   q    17  7    15  6    13  6    13  5    11  5    11  4    9  4    9  3
q        q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      3       5       4      2      5     t          3  2
>   ----- + ----- + ----- + ---- + ---- + - + q t + q  t
     7  3    7  2    5  2    5      3     q
    q  t    q  t    q  t    q  t   q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9a52
L9a51
L9a51
L9a53
L9a53