© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9a41
L9a41
L9a43
L9a43
L9a42
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9a42

Visit L9a42's page at Knotilus!

Acknowledgement

L9a42 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X12,4,13,3 X18,5,9,6 X6,9,7,10 X16,12,17,11 X14,8,15,7 X4,14,5,13 X8,16,1,15 X2,17,3,18

Gauss Code: {{1, -9, 2, -7, 3, -4, 6, -8}, {4, -1, 5, -2, 7, -6, 8, -5, 9, -3}}

Jones Polynomial: - q-7/2 + 3q-5/2 - 6q-3/2 + 8q-1/2 - 10q1/2 + 9q3/2 - 9q5/2 + 6q7/2 - 3q9/2 + q11/2

A2 (sl(3)) Invariant: q-10 - q-8 + 2q-6 + 3 - q2 + 4q4 + 2q8 + q10 - 2q12 + q14 - q16

HOMFLY-PT Polynomial: 3a-3z + 3a-3z3 + a-3z5 - a-1z-1 - 6a-1z - 9a-1z3 - 5a-1z5 - a-1z7 + az-1 + 3az + 3az3 + az5

Kauffman Polynomial: a-6z2 - a-6z4 - a-5z + 3a-5z3 - 3a-5z5 - 3a-4z2 + 6a-4z4 - 5a-4z6 + 2a-3z - 4a-3z3 + 6a-3z5 - 5a-3z7 - 6a-2z2 + 12a-2z4 - 5a-2z6 - 2a-2z8 - a-1z-1 + 6a-1z - 12a-1z3 + 17a-1z5 - 9a-1z7 + 1 - 5z2 + 11z4 - 3z6 - 2z8 - az-1 + 2az - 3az3 + 7az5 - 4az7 - 3a2z2 + 6a2z4 - 3a2z6 - a3z + 2a3z3 - a3z5

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 12         1
j = 10        2 
j = 8       41 
j = 6      52  
j = 4     44   
j = 2    65    
j = 0   46     
j = -2  24      
j = -4 14       
j = -6 2        
j = -81         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, Alternating, 42]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, Alternating, 42]]
Out[4]=   
PD[X[10, 1, 11, 2], X[12, 4, 13, 3], X[18, 5, 9, 6], X[6, 9, 7, 10], 
 
>   X[16, 12, 17, 11], X[14, 8, 15, 7], X[4, 14, 5, 13], X[8, 16, 1, 15], 
 
>   X[2, 17, 3, 18]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 2, -7, 3, -4, 6, -8}, {4, -1, 5, -2, 7, -6, 8, -5, 9, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(7/2)    3      6        8                      3/2      5/2      7/2
-q       + ---- - ---- + ------- - 10 Sqrt[q] + 9 q    - 9 q    + 6 q    - 
            5/2    3/2   Sqrt[q]
           q      q
 
       9/2    11/2
>   3 q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -10    -8   2     2      4      8    10      12    14    16
3 + q    - q   + -- - q  + 4 q  + 2 q  + q   - 2 q   + q   - q
                  6
                 q
In[8]:=
HOMFLYPT[Link[9, Alternating, 42]][a, z]
Out[8]=   
                                    3      3             5      5           7
   1     a   3 z   6 z           3 z    9 z         3   z    5 z       5   z
-(---) + - + --- - --- + 3 a z + ---- - ---- + 3 a z  + -- - ---- + a z  - --
  a z    z    3     a              3     a               3    a            a
             a                    a                     a
In[9]:=
Kauffman[Link[9, Alternating, 42]][a, z]
Out[9]=   
                                                      2      2      2
     1    a   z    2 z   6 z            3        2   z    3 z    6 z
1 - --- - - - -- + --- + --- + 2 a z - a  z - 5 z  + -- - ---- - ---- - 
    a z   z    5    3     a                           6     4      2
              a    a                                 a     a      a
 
                 3      3       3                               4      4
       2  2   3 z    4 z    12 z         3      3  3       4   z    6 z
>   3 a  z  + ---- - ---- - ----- - 3 a z  + 2 a  z  + 11 z  - -- + ---- + 
                5      3      a                                 6     4
               a      a                                        a     a
 
        4                5      5       5                              6
    12 z       2  4   3 z    6 z    17 z         5    3  5      6   5 z
>   ----- + 6 a  z  - ---- + ---- + ----- + 7 a z  - a  z  - 3 z  - ---- - 
      2                 5      3      a                               4
     a                 a      a                                      a
 
       6                7      7                      8
    5 z       2  6   5 z    9 z         7      8   2 z
>   ---- - 3 a  z  - ---- - ---- - 4 a z  - 2 z  - ----
      2                3     a                       2
     a                a                             a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1       2       1       4       2     4    4        2        4
6 + 6 q  + ----- + ----- + ----- + ----- + ----- + - + ---- + 5 q  t + 4 q  t + 
            8  4    6  3    4  3    4  2    2  2   t    2
           q  t    q  t    q  t    q  t    q  t        q  t
 
       4  2      6  2      6  3      8  3    8  4      10  4    12  5
>   4 q  t  + 5 q  t  + 2 q  t  + 4 q  t  + q  t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9a42
L9a41
L9a41
L9a43
L9a43