© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9a34
L9a34
L9a36
L9a36
L9a35
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9a35

Visit L9a35's page at Knotilus!

Acknowledgement

L9a35 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X12,3,13,4 X16,8,17,7 X14,6,15,5 X18,13,9,14 X6,16,7,15 X4,18,5,17 X2,9,3,10 X8,11,1,12

Gauss Code: {{1, -8, 2, -7, 4, -6, 3, -9}, {8, -1, 9, -2, 5, -4, 6, -3, 7, -5}}

Jones Polynomial: q-9/2 - 2q-7/2 + 3q-5/2 - 6q-3/2 + 6q-1/2 - 7q1/2 + 6q3/2 - 5q5/2 + 3q7/2 - q9/2

A2 (sl(3)) Invariant: - q-14 + 3q-6 + q-4 + 2q-2 + 2 + 2q4 - q6 + q8 - q12 + q14

HOMFLY-PT Polynomial: - a-3z - a-3z3 - a-1z-1 + 2a-1z3 + a-1z5 + az-1 + 3az + 3az3 + az5 - 2a3z - a3z3

Kauffman Polynomial: - a-5z3 + a-4z2 - 3a-4z4 - 2a-3z + 5a-3z3 - 5a-3z5 - 2a-2z2 + 6a-2z4 - 5a-2z6 - a-1z-1 + 4a-1z3 + a-1z5 - 3a-1z7 + 1 - 5z2 + 12z4 - 4z6 - z8 - az-1 + 6az - 12az3 + 14az5 - 5az7 - 6a2z2 + 7a2z4 - a2z8 + 4a3z - 10a3z3 + 8a3z5 - 2a3z7 - 4a4z2 + 4a4z4 - a4z6

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 10         1
j = 8        2 
j = 6       31 
j = 4      32  
j = 2     43   
j = 0    45    
j = -2   22     
j = -4  14      
j = -6 12       
j = -8 1        
j = -101         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, Alternating, 35]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, Alternating, 35]]
Out[4]=   
PD[X[10, 1, 11, 2], X[12, 3, 13, 4], X[16, 8, 17, 7], X[14, 6, 15, 5], 
 
>   X[18, 13, 9, 14], X[6, 16, 7, 15], X[4, 18, 5, 17], X[2, 9, 3, 10], 
 
>   X[8, 11, 1, 12]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -8, 2, -7, 4, -6, 3, -9}, {8, -1, 9, -2, 5, -4, 6, -3, 7, -5}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(9/2)    2      3      6        6                     3/2      5/2      7/2
q       - ---- + ---- - ---- + ------- - 7 Sqrt[q] + 6 q    - 5 q    + 3 q    - 
           7/2    5/2    3/2   Sqrt[q]
          q      q      q
 
     9/2
>   q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -14   3     -4   2       4    6    8    12    14
2 - q    + -- + q   + -- + 2 q  - q  + q  - q   + q
            6          2
           q          q
In[8]:=
HOMFLYPT[Link[9, Alternating, 35]][a, z]
Out[8]=   
                                    3      3                     5
   1     a   z               3     z    2 z         3    3  3   z       5
-(---) + - - -- + 3 a z - 2 a  z - -- + ---- + 3 a z  - a  z  + -- + a z
  a z    z    3                     3    a                      a
             a                     a
In[9]:=
Kauffman[Link[9, Alternating, 35]][a, z]
Out[9]=   
                                             2      2
     1    a   2 z              3        2   z    2 z       2  2      4  2
1 - --- - - - --- + 6 a z + 4 a  z - 5 z  + -- - ---- - 6 a  z  - 4 a  z  - 
    a z   z    3                             4     2
              a                             a     a
 
     3      3      3                                   4      4
    z    5 z    4 z          3       3  3       4   3 z    6 z       2  4
>   -- + ---- + ---- - 12 a z  - 10 a  z  + 12 z  - ---- + ---- + 7 a  z  + 
     5     3     a                                    4      2
    a     a                                          a      a
 
                 5    5                                 6              7
       4  4   5 z    z          5      3  5      6   5 z     4  6   3 z
>   4 a  z  - ---- + -- + 14 a z  + 8 a  z  - 4 z  - ---- - a  z  - ---- - 
                3    a                                 2             a
               a                                      a
 
         7      3  7    8    2  8
>   5 a z  - 2 a  z  - z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1        1       1       2       1       4       2     4    2
5 + 4 q  + ------ + ----- + ----- + ----- + ----- + ----- + ----- + - + ---- + 
            10  5    8  4    6  4    6  3    4  3    4  2    2  2   t    2
           q   t    q  t    q  t    q  t    q  t    q  t    q  t        q  t
 
       2        4        4  2      6  2    6  3      8  3    10  4
>   3 q  t + 3 q  t + 2 q  t  + 3 q  t  + q  t  + 2 q  t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9a35
L9a34
L9a34
L9a36
L9a36