PD Presentation: |
X8192 X12,3,13,4 X18,13,7,14 X14,9,15,10 X10,17,11,18 X16,5,17,6 X2738 X4,11,5,12 X6,15,1,16 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[9, Alternating, 32]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[9, Alternating, 32]] |
Out[4]= | PD[X[8, 1, 9, 2], X[12, 3, 13, 4], X[18, 13, 7, 14], X[14, 9, 15, 10],
> X[10, 17, 11, 18], X[16, 5, 17, 6], X[2, 7, 3, 8], X[4, 11, 5, 12],
> X[6, 15, 1, 16]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -7, 2, -8, 6, -9}, {7, -1, 4, -5, 8, -2, 3, -4, 9, -6, 5, -3}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(21/2) 3 5 7 8 9 7 6 3 -(3/2)
q - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- - q
19/2 17/2 15/2 13/2 11/2 9/2 7/2 5/2
q q q q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -34 2 -30 4 -22 2 -18 2 -12 2 -8 2 -4
-q - --- + q + --- + q + --- + q + --- - q + --- + q - -- + q
32 24 20 14 10 6
q q q q q q |
In[8]:= | HOMFLYPT[Link[9, Alternating, 32]][a, z] |
Out[8]= | 7 9 11
-2 a 3 a a 5 7 9 3 3 5 3 7 3
----- + ---- - --- - 3 a z - 4 a z + 4 a z - a z - 3 a z - 3 a z
z z z |
In[9]:= | Kauffman[Link[9, Alternating, 32]][a, z] |
Out[9]= | 7 9 11
8 10 12 2 a 3 a a 5 7 9 11
3 a + 3 a + a - ---- - ---- - --- - 3 a z + 6 a z + 11 a z + 2 a z -
z z z
6 2 8 2 10 2 12 2 3 3 5 3 7 3
> 3 a z - 14 a z - 14 a z - 3 a z - a z + 6 a z - 6 a z -
9 3 11 3 4 4 6 4 8 4 10 4 12 4
> 22 a z - 9 a z - 3 a z + 9 a z + 21 a z + 12 a z + 3 a z -
5 5 7 5 9 5 11 5 6 6 8 6 10 6
> 6 a z + 10 a z + 26 a z + 10 a z - 7 a z - 5 a z + a z -
12 6 7 7 9 7 11 7 8 8 10 8
> a z - 6 a z - 9 a z - 3 a z - 2 a z - 2 a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | -4 -2 1 2 1 3 2 4 4
q + q + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
22 9 20 8 18 8 18 7 16 7 16 6 14 6
q t q t q t q t q t q t q t
5 3 4 5 3 4 3 3 3
> ------ + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----
14 5 12 5 12 4 10 4 10 3 8 3 8 2 6 2 4
q t q t q t q t q t q t q t q t q t |