© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9a28
L9a28
L9a30
L9a30
L9a29
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9a29

Visit L9a29's page at Knotilus!

Acknowledgement

L9a29 as Morse Link
DrawMorseLink

PD Presentation: X8192 X2,9,3,10 X10,3,11,4 X6718 X16,11,17,12 X14,6,15,5 X4,16,5,15 X18,13,7,14 X12,17,13,18

Gauss Code: {{1, -2, 3, -7, 6, -4}, {4, -1, 2, -3, 5, -9, 8, -6, 7, -5, 9, -8}}

Jones Polynomial: q-19/2 - 2q-17/2 + 3q-15/2 - 4q-13/2 + 4q-11/2 - 4q-9/2 + 3q-7/2 - 3q-5/2 + q-3/2 - q-1/2

A2 (sl(3)) Invariant: - q-28 - q-24 + 2q-16 + 2q-12 + q-10 + 2q-8 + 2q-6 + q-4 + q-2

HOMFLY-PT Polynomial: - 2a3z-1 - 7a3z - 5a3z3 - a3z5 + 3a5z-1 + 10a5z + 12a5z3 + 6a5z5 + a5z7 - a7z-1 - 4a7z - 4a7z3 - a7z5

Kauffman Polynomial: - 2a3z-1 + 9a3z - 12a3z3 + 6a3z5 - a3z7 + 3a4 - 5a4z2 - 2a4z4 + 4a4z6 - a4z8 - 3a5z-1 + 14a5z - 27a5z3 + 19a5z5 - 4a5z7 + 3a6 - 13a6z2 + 11a6z4 - a6z8 - a7z-1 + 3a7z - 6a7z3 + 9a7z5 - 3a7z7 + a8 - 5a8z2 + 10a8z4 - 4a8z6 - 2a9z + 7a9z3 - 4a9z5 + 2a10z2 - 3a10z4 - 2a11z3 - a12z2

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 0         1
j = -2          
j = -4       31 
j = -6      11  
j = -8     32   
j = -10    22    
j = -12   22     
j = -14  12      
j = -16 12       
j = -18 1        
j = -201         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, Alternating, 29]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, Alternating, 29]]
Out[4]=   
PD[X[8, 1, 9, 2], X[2, 9, 3, 10], X[10, 3, 11, 4], X[6, 7, 1, 8], 
 
>   X[16, 11, 17, 12], X[14, 6, 15, 5], X[4, 16, 5, 15], X[18, 13, 7, 14], 
 
>   X[12, 17, 13, 18]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -7, 6, -4}, {4, -1, 2, -3, 5, -9, 8, -6, 7, -5, 9, -8}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(19/2)     2       3       4       4      4      3      3      -(3/2)
q        - ----- + ----- - ----- + ----- - ---- + ---- - ---- + q       - 
            17/2    15/2    13/2    11/2    9/2    7/2    5/2
           q       q       q       q       q      q      q
 
       1
>   -------
    Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -28    -24    2     2     -10   2    2     -4    -2
-q    - q    + --- + --- + q    + -- + -- + q   + q
                16    12           8    6
               q     q            q    q
In[8]:=
HOMFLYPT[Link[9, Alternating, 29]][a, z]
Out[8]=   
    3      5    7
-2 a    3 a    a       3         5        7        3  3       5  3      7  3
----- + ---- - -- - 7 a  z + 10 a  z - 4 a  z - 5 a  z  + 12 a  z  - 4 a  z  - 
  z      z     z
 
     3  5      5  5    7  5    5  7
>   a  z  + 6 a  z  - a  z  + a  z
In[9]:=
Kauffman[Link[9, Alternating, 29]][a, z]
Out[9]=   
                      3      5    7
   4      6    8   2 a    3 a    a       3         5        7        9
3 a  + 3 a  + a  - ---- - ---- - -- + 9 a  z + 14 a  z + 3 a  z - 2 a  z - 
                    z      z     z
 
       4  2       6  2      8  2      10  2    12  2       3  3       5  3
>   5 a  z  - 13 a  z  - 5 a  z  + 2 a   z  - a   z  - 12 a  z  - 27 a  z  - 
 
       7  3      9  3      11  3      4  4       6  4       8  4      10  4
>   6 a  z  + 7 a  z  - 2 a   z  - 2 a  z  + 11 a  z  + 10 a  z  - 3 a   z  + 
 
       3  5       5  5      7  5      9  5      4  6      8  6    3  7
>   6 a  z  + 19 a  z  + 9 a  z  - 4 a  z  + 4 a  z  - 4 a  z  - a  z  - 
 
       5  7      7  7    4  8    6  8
>   4 a  z  - 3 a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -6   3      1        1        1        2        1        2        2
q   + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
       4    20  7    18  6    16  6    16  5    14  5    14  4    12  4
      q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      2        2        2        3      2      1     t     2
>   ------ + ------ + ------ + ----- + ---- + ---- + -- + t
     12  3    10  3    10  2    8  2    8      6      4
    q   t    q   t    q   t    q  t    q  t   q  t   q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9a29
L9a28
L9a28
L9a30
L9a30