© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9a16
L9a16
L9a18
L9a18
L9a17
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9a17

Visit L9a17's page at Knotilus!

Acknowledgement

L9a17 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,4,13,3 X16,8,17,7 X18,10,5,9 X8,18,9,17 X14,12,15,11 X10,16,11,15 X2536 X4,14,1,13

Gauss Code: {{1, -8, 2, -9}, {8, -1, 3, -5, 4, -7, 6, -2, 9, -6, 7, -3, 5, -4}}

Jones Polynomial: - q-1/2 + q1/2 - 4q3/2 + 5q5/2 - 7q7/2 + 7q9/2 - 6q11/2 + 5q13/2 - 3q15/2 + q17/2

A2 (sl(3)) Invariant: q-2 + 1 + 2q2 + 4q4 + q6 + 3q8 - q12 - 2q16 + q18 - q20 + q24 - q26

HOMFLY-PT Polynomial: a-7z + a-7z3 + a-5z-1 - 2a-5z3 - a-5z5 - 3a-3z-1 - 4a-3z - 3a-3z3 - a-3z5 + 2a-1z-1 + 3a-1z + a-1z3

Kauffman Polynomial: a-10z2 - a-10z4 + 4a-9z3 - 3a-9z5 - 2a-8z2 + 6a-8z4 - 4a-8z6 + 2a-7z - 4a-7z3 + 4a-7z5 - 3a-7z7 - a-6 + a-6z2 + 2a-6z4 - 2a-6z6 - a-6z8 + a-5z-1 - 5a-5z3 + 7a-5z5 - 4a-5z7 - 3a-4 + 7a-4z2 - 4a-4z4 + a-4z6 - a-4z8 + 3a-3z-1 - 7a-3z + 7a-3z3 - a-3z5 - a-3z7 - 3a-2 + 3a-2z2 + a-2z4 - a-2z6 + 2a-1z-1 - 5a-1z + 4a-1z3 - a-1z5

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 18         1
j = 16        2 
j = 14       31 
j = 12      32  
j = 10     43   
j = 8    33    
j = 6   24     
j = 4  23      
j = 2 14       
j = 0          
j = -21         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, Alternating, 17]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, Alternating, 17]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[16, 8, 17, 7], X[18, 10, 5, 9], 
 
>   X[8, 18, 9, 17], X[14, 12, 15, 11], X[10, 16, 11, 15], X[2, 5, 3, 6], 
 
>   X[4, 14, 1, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -8, 2, -9}, {8, -1, 3, -5, 4, -7, 6, -2, 9, -6, 7, -3, 5, -4}]
In[6]:=
Jones[L][q]
Out[6]=   
     1                    3/2      5/2      7/2      9/2      11/2      13/2
-(-------) + Sqrt[q] - 4 q    + 5 q    - 7 q    + 7 q    - 6 q     + 5 q     - 
  Sqrt[q]
 
       15/2    17/2
>   3 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -2      2      4    6      8    12      16    18    20    24    26
1 + q   + 2 q  + 4 q  + q  + 3 q  - q   - 2 q   + q   - q   + q   - q
In[8]:=
HOMFLYPT[Link[9, Alternating, 17]][a, z]
Out[8]=   
                                      3      3      3    3    5    5
 1      3      2    z    4 z   3 z   z    2 z    3 z    z    z    z
---- - ---- + --- + -- - --- + --- + -- - ---- - ---- + -- - -- - --
 5      3     a z    7    3     a     7     5      3    a     5    3
a  z   a  z         a    a           a     a      a          a    a
In[9]:=
Kauffman[Link[9, Alternating, 17]][a, z]
Out[9]=   
                                                        2       2    2      2
  -6   3    3     1      3      2    2 z   7 z   5 z   z     2 z    z    7 z
-a   - -- - -- + ---- + ---- + --- + --- - --- - --- + --- - ---- + -- + ---- + 
        4    2    5      3     a z    7     3     a     10     8     6     4
       a    a    a  z   a  z         a     a           a      a     a     a
 
       2      3      3      3      3      3    4       4      4      4    4
    3 z    4 z    4 z    5 z    7 z    4 z    z     6 z    2 z    4 z    z
>   ---- + ---- - ---- - ---- + ---- + ---- - --- + ---- + ---- - ---- + -- - 
      2      9      7      5      3     a      10     8      6      4     2
     a      a      a      a      a            a      a      a      a     a
 
       5      5      5    5    5      6      6    6    6      7      7    7
    3 z    4 z    7 z    z    z    4 z    2 z    z    z    3 z    4 z    z
>   ---- + ---- + ---- - -- - -- - ---- - ---- + -- - -- - ---- - ---- - -- - 
      9      7      5     3   a      8      6     4    2     7      5     3
     a      a      a     a          a      a     a    a     a      a     a
 
     8    8
    z    z
>   -- - --
     6    4
    a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
                       2
   2      4     1     q       4        6        6  2      8  2      8  3
4 q  + 2 q  + ----- + -- + 3 q  t + 2 q  t + 4 q  t  + 3 q  t  + 3 q  t  + 
               2  2   t
              q  t
 
       10  3      10  4      12  4      12  5      14  5    14  6      16  6
>   4 q   t  + 3 q   t  + 3 q   t  + 2 q   t  + 3 q   t  + q   t  + 2 q   t  + 
 
     18  7
>   q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9a17
L9a16
L9a16
L9a18
L9a18