© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9a13
L9a13
L9a15
L9a15
L9a14
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9a14

Visit L9a14's page at Knotilus!

Acknowledgement

L9a14 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,4,13,3 X14,8,15,7 X16,10,17,9 X18,12,5,11 X8,16,9,15 X10,18,11,17 X2536 X4,14,1,13

Gauss Code: {{1, -8, 2, -9}, {8, -1, 3, -6, 4, -7, 5, -2, 9, -3, 6, -4, 7, -5}}

Jones Polynomial: - q1/2 + q3/2 - 3q5/2 + 2q7/2 - 4q9/2 + 4q11/2 - 3q13/2 + 3q15/2 - 2q17/2 + q19/2

A2 (sl(3)) Invariant: q2 + q4 + 2q6 + 3q8 + 3q10 + 4q12 + q14 + q16 - 2q18 - 2q20 - q22 - q24 - q28

HOMFLY-PT Polynomial: 2a-7z-1 + 4a-7z + 4a-7z3 + a-7z5 - 5a-5z-1 - 11a-5z - 12a-5z3 - 6a-5z5 - a-5z7 + 3a-3z-1 + 7a-3z + 5a-3z3 + a-3z5

Kauffman Polynomial: - a-12z2 - 2a-11z3 - a-10 + 3a-10z2 - 3a-10z4 + 4a-9z3 - 3a-9z5 + 6a-8z4 - 3a-8z6 - 2a-7z-1 + 7a-7z - 12a-7z3 + 11a-7z5 - 3a-7z7 + 5a-6 - 12a-6z2 + 8a-6z4 + a-6z6 - a-6z8 - 5a-5z-1 + 17a-5z - 30a-5z3 + 20a-5z5 - 4a-5z7 + 5a-4 - 8a-4z2 - a-4z4 + 4a-4z6 - a-4z8 - 3a-3z-1 + 10a-3z - 12a-3z3 + 6a-3z5 - a-3z7

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 20         1
j = 18        1 
j = 16       21 
j = 14      11  
j = 12     32   
j = 10    11    
j = 8   13     
j = 6  21      
j = 4 13       
j = 2          
j = 01         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, Alternating, 14]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, Alternating, 14]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[14, 8, 15, 7], X[16, 10, 17, 9], 
 
>   X[18, 12, 5, 11], X[8, 16, 9, 15], X[10, 18, 11, 17], X[2, 5, 3, 6], 
 
>   X[4, 14, 1, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -8, 2, -9}, {8, -1, 3, -6, 4, -7, 5, -2, 9, -3, 6, -4, 7, -5}]
In[6]:=
Jones[L][q]
Out[6]=   
            3/2      5/2      7/2      9/2      11/2      13/2      15/2
-Sqrt[q] + q    - 3 q    + 2 q    - 4 q    + 4 q     - 3 q     + 3 q     - 
 
       17/2    19/2
>   2 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 2    4      6      8      10      12    14    16      18      20    22    24
q  + q  + 2 q  + 3 q  + 3 q   + 4 q   + q   + q   - 2 q   - 2 q   - q   - q   - 
 
     28
>   q
In[8]:=
HOMFLYPT[Link[9, Alternating, 14]][a, z]
Out[8]=   
                                           3       3      3    5      5    5
 2      5      3     4 z   11 z   7 z   4 z    12 z    5 z    z    6 z    z
---- - ---- + ---- + --- - ---- + --- + ---- - ----- + ---- + -- - ---- + -- - 
 7      5      3      7      5     3      7      5       3     7     5     3
a  z   a  z   a  z   a      a     a      a      a       a     a     a     a
 
     7
    z
>   --
     5
    a
In[9]:=
Kauffman[Link[9, Alternating, 14]][a, z]
Out[9]=   
                                                            2       2       2
  -10   5    5     2      5      3     7 z   17 z   10 z   z     3 z    12 z
-a    + -- + -- - ---- - ---- - ---- + --- + ---- + ---- - --- + ---- - ----- - 
         6    4    7      5      3      7      5      3     12    10      6
        a    a    a  z   a  z   a  z   a      a      a     a     a       a
 
       2      3      3       3       3       3      4      4      4    4
    8 z    2 z    4 z    12 z    30 z    12 z    3 z    6 z    8 z    z
>   ---- - ---- + ---- - ----- - ----- - ----- - ---- + ---- + ---- - -- - 
      4     11      9      7       5       3      10      8      6     4
     a     a       a      a       a       a      a       a      a     a
 
       5       5       5      5      6    6      6      7      7    7    8    8
    3 z    11 z    20 z    6 z    3 z    z    4 z    3 z    4 z    z    z    z
>   ---- + ----- + ----- + ---- - ---- + -- + ---- - ---- - ---- - -- - -- - --
      9      7       5       3      8     6     4      7      5     3    6    4
     a      a       a       a      a     a     a      a      a     a    a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
                     4
   4      6    -2   q     6      8        8  2    10  2    10  3      12  3
3 q  + 2 q  + t   + -- + q  t + q  t + 3 q  t  + q   t  + q   t  + 3 q   t  + 
                    t
 
       12  4    14  4    14  5      16  5    16  6    18  6    20  7
>   2 q   t  + q   t  + q   t  + 2 q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9a14
L9a13
L9a13
L9a15
L9a15