© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9a11
L9a11
L9a13
L9a13
L9a12
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9a12

Visit L9a12's page at Knotilus!

Acknowledgement

L9a12 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,3,13,4 X18,13,5,14 X14,7,15,8 X16,9,17,10 X8,15,9,16 X10,17,11,18 X2536 X4,11,1,12

Gauss Code: {{1, -8, 2, -9}, {8, -1, 4, -6, 5, -7, 9, -2, 3, -4, 6, -5, 7, -3}}

Jones Polynomial: q-23/2 - 2q-21/2 + 4q-19/2 - 5q-17/2 + 6q-15/2 - 7q-13/2 + 4q-11/2 - 4q-9/2 + 2q-7/2 - q-5/2

A2 (sl(3)) Invariant: - q-36 - 2q-34 - q-32 - 2q-30 + q-26 + q-24 + 4q-22 + 2q-20 + 4q-18 + 2q-16 + q-12 - q-10 + q-8

HOMFLY-PT Polynomial: - a5z - 3a5z3 - a5z5 - 3a7z-1 - 9a7z - 8a7z3 - 2a7z5 + 5a9z-1 + 9a9z + 3a9z3 - 2a11z-1 - a11z

Kauffman Polynomial: - a5z + 3a5z3 - a5z5 - a6z2 + 5a6z4 - 2a6z6 - 3a7z-1 + 10a7z - 15a7z3 + 11a7z5 - 3a7z7 + 5a8 - 12a8z2 + 9a8z4 - a8z6 - a8z8 - 5a9z-1 + 16a9z - 26a9z3 + 17a9z5 - 5a9z7 + 5a10 - 11a10z2 + 6a10z4 - a10z6 - a10z8 - 2a11z-1 + 5a11z - 5a11z3 + 3a11z5 - 2a11z7 + 2a12z2 + a12z4 - 2a12z6 + 3a13z3 - 2a13z5 - a14 + 2a14z2 - a14z4

Khovanov Homology:
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -4         1
j = -6        21
j = -8       2  
j = -10      22  
j = -12     52   
j = -14    23    
j = -16   34     
j = -18  12      
j = -20 13       
j = -22 1        
j = -241         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, Alternating, 12]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, Alternating, 12]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[18, 13, 5, 14], X[14, 7, 15, 8], 
 
>   X[16, 9, 17, 10], X[8, 15, 9, 16], X[10, 17, 11, 18], X[2, 5, 3, 6], 
 
>   X[4, 11, 1, 12]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -8, 2, -9}, {8, -1, 4, -6, 5, -7, 9, -2, 3, -4, 6, -5, 7, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(23/2)     2       4       5       6       7       4      4      2      -(5/2)
q        - ----- + ----- - ----- + ----- - ----- + ----- - ---- + ---- - q
            21/2    19/2    17/2    15/2    13/2    11/2    9/2    7/2
           q       q       q       q       q       q       q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -36    2     -32    2     -26    -24    4     2     4     2     -12    -10
-q    - --- - q    - --- + q    + q    + --- + --- + --- + --- + q    - q    + 
         34           30                  22    20    18    16
        q            q                   q     q     q     q
 
     -8
>   q
In[8]:=
HOMFLYPT[Link[9, Alternating, 12]][a, z]
Out[8]=   
    7      9      11
-3 a    5 a    2 a      5        7        9      11        5  3      7  3
----- + ---- - ----- - a  z - 9 a  z + 9 a  z - a   z - 3 a  z  - 8 a  z  + 
  z      z       z
 
       9  3    5  5      7  5
>   3 a  z  - a  z  - 2 a  z
In[9]:=
Kauffman[Link[9, Alternating, 12]][a, z]
Out[9]=   
                        7      9      11
   8      10    14   3 a    5 a    2 a      5         7         9        11
5 a  + 5 a   - a   - ---- - ---- - ----- - a  z + 10 a  z + 16 a  z + 5 a   z - 
                      z      z       z
 
     6  2       8  2       10  2      12  2      14  2      5  3       7  3
>   a  z  - 12 a  z  - 11 a   z  + 2 a   z  + 2 a   z  + 3 a  z  - 15 a  z  - 
 
        9  3      11  3      13  3      6  4      8  4      10  4    12  4
>   26 a  z  - 5 a   z  + 3 a   z  + 5 a  z  + 9 a  z  + 6 a   z  + a   z  - 
 
     14  4    5  5       7  5       9  5      11  5      13  5      6  6
>   a   z  - a  z  + 11 a  z  + 17 a  z  + 3 a   z  - 2 a   z  - 2 a  z  - 
 
     8  6    10  6      12  6      7  7      9  7      11  7    8  8    10  8
>   a  z  - a   z  - 2 a   z  - 3 a  z  - 5 a  z  - 2 a   z  - a  z  - a   z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -6    -4     1        1        1        3        1        2        3
q   + q   + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
             24  9    22  8    20  8    20  7    18  7    18  6    16  6
            q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      4        2        3        5        2        2        2        2      2
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----
     16  5    14  5    14  4    12  4    12  3    10  3    10  2    8  2    6
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9a12
L9a11
L9a11
L9a13
L9a13