© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L9a9
L9a9
L9a11
L9a11
L9a10
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L9a10

Visit L9a10's page at Knotilus!

Acknowledgement

L9a10 as Morse Link
DrawMorseLink

PD Presentation: X6172 X16,7,17,8 X4,17,1,18 X12,6,13,5 X10,4,11,3 X18,12,5,11 X14,9,15,10 X2,14,3,13 X8,15,9,16

Gauss Code: {{1, -8, 5, -3}, {4, -1, 2, -9, 7, -5, 6, -4, 8, -7, 9, -2, 3, -6}}

Jones Polynomial: q-9/2 - 3q-7/2 + 4q-5/2 - 7q-3/2 + 8q-1/2 - 8q1/2 + 7q3/2 - 6q5/2 + 3q7/2 - q9/2

A2 (sl(3)) Invariant: - q-14 + q-12 + q-10 + q-8 + 4q-6 - 1 - 2q2 + 2q4 + 3q8 + q10 - q12 + q14

HOMFLY-PT Polynomial: - a-3z-1 - a-3z - a-3z3 + 2a-1z-1 + 2a-1z + 2a-1z3 + a-1z5 - 2az-1 + 2az3 + az5 + a3z-1 - a3z - a3z3

Kauffman Polynomial: - a-5z3 - 3a-4z4 + a-3z-1 - 3a-3z + 6a-3z3 - 6a-3z5 - 4a-2z2 + 10a-2z4 - 7a-2z6 + 2a-1z-1 - 6a-1z + 5a-1z3 + 5a-1z5 - 5a-1z7 + 1 - 6z2 + 14z4 - 3z6 - 2z8 + 2az-1 - 2az - 13az3 + 22az5 - 8az7 - 4a2z2 + 4a2z4 + 3a2z6 - 2a2z8 + a3z-1 + a3z - 11a3z3 + 11a3z5 - 3a3z7 - 2a4z2 + 3a4z4 - a4z6

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 10         1
j = 8        2 
j = 6       41 
j = 4      32  
j = 2     54   
j = 0    55    
j = -2   23     
j = -4  25      
j = -6 12       
j = -8 2        
j = -101         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[9, Alternating, 10]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[9, Alternating, 10]]
Out[4]=   
PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[12, 6, 13, 5], 
 
>   X[10, 4, 11, 3], X[18, 12, 5, 11], X[14, 9, 15, 10], X[2, 14, 3, 13], 
 
>   X[8, 15, 9, 16]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -8, 5, -3}, {4, -1, 2, -9, 7, -5, 6, -4, 8, -7, 9, -2, 3, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(9/2)    3      4      7        8                     3/2      5/2      7/2
q       - ---- + ---- - ---- + ------- - 8 Sqrt[q] + 7 q    - 6 q    + 3 q    - 
           7/2    5/2    3/2   Sqrt[q]
          q      q      q
 
     9/2
>   q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -14    -12    -10    -8   4       2      4      8    10    12    14
-1 - q    + q    + q    + q   + -- - 2 q  + 2 q  + 3 q  + q   - q   + q
                                 6
                                q
In[8]:=
HOMFLYPT[Link[9, Alternating, 10]][a, z]
Out[8]=   
                       3                      3      3                     5
   1       2    2 a   a    z    2 z    3     z    2 z         3    3  3   z
-(----) + --- - --- + -- - -- + --- - a  z - -- + ---- + 2 a z  - a  z  + -- + 
   3      a z    z    z     3    a            3    a                      a
  a  z                     a                 a
 
       5
>   a z
In[9]:=
Kauffman[Link[9, Alternating, 10]][a, z]
Out[9]=   
                        3                                        2
     1      2    2 a   a    3 z   6 z            3        2   4 z       2  2
1 + ---- + --- + --- + -- - --- - --- - 2 a z + a  z - 6 z  - ---- - 4 a  z  - 
     3     a z    z    z     3     a                            2
    a  z                    a                                  a
 
               3      3      3                                   4       4
       4  2   z    6 z    5 z          3       3  3       4   3 z    10 z
>   2 a  z  - -- + ---- + ---- - 13 a z  - 11 a  z  + 14 z  - ---- + ----- + 
               5     3     a                                    4      2
              a     a                                          a      a
 
                           5      5                                  6
       2  4      4  4   6 z    5 z          5       3  5      6   7 z
>   4 a  z  + 3 a  z  - ---- + ---- + 22 a z  + 11 a  z  - 3 z  - ---- + 
                          3     a                                   2
                         a                                         a
 
                         7
       2  6    4  6   5 z         7      3  7      8      2  8
>   3 a  z  - a  z  - ---- - 8 a z  - 3 a  z  - 2 z  - 2 a  z
                       a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1        2       1       2       2       5       2     5    3
5 + 5 q  + ------ + ----- + ----- + ----- + ----- + ----- + ----- + - + ---- + 
            10  5    8  4    6  4    6  3    4  3    4  2    2  2   t    2
           q   t    q  t    q  t    q  t    q  t    q  t    q  t        q  t
 
       2        4        4  2      6  2    6  3      8  3    10  4
>   4 q  t + 3 q  t + 2 q  t  + 4 q  t  + q  t  + 2 q  t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L9a10
L9a9
L9a9
L9a11
L9a11