© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L8a5
L8a5
L8a7
L8a7
L8a6
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L8a6

Visit L8a6's page at Knotilus!

Acknowledgement

L8a6 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,3,13,4 X16,8,5,7 X14,10,15,9 X10,14,11,13 X8,16,9,15 X2536 X4,11,1,12

Gauss Code: {{1, -7, 2, -8}, {7, -1, 3, -6, 4, -5, 8, -2, 5, -4, 6, -3}}

Jones Polynomial: - q-9/2 + q-7/2 - 3q-5/2 + 3q-3/2 - 4q-1/2 + 3q1/2 - 2q3/2 + 2q5/2 - q7/2

A2 (sl(3)) Invariant: q-16 + 2q-14 + q-12 + 2q-10 + 2q-8 + q-4 + 1 - q4 - q8 + q12

HOMFLY-PT Polynomial: - a-3z + a-1z + a-1z3 + az3 - a3z-1 - 2a3z + a5z-1

Kauffman Polynomial: - a-3z + 3a-3z3 - a-3z5 - 5a-2z2 + 7a-2z4 - 2a-2z6 + 2a-1z5 - a-1z7 - 5z2 + 8z4 - 3z6 + az - 3az3 + 2az5 - az7 - a2z6 - a3z-1 + 2a3z - a3z3 - a3z5 + a4 - a4z4 - a5z-1 + 2a5z - a5z3

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 8        1
j = 6       1 
j = 4      11 
j = 2     21  
j = 0    21   
j = -2   23    
j = -4  11     
j = -6  2      
j = -811       
j = -101        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[8, Alternating, 6]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[8, Alternating, 6]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[16, 8, 5, 7], X[14, 10, 15, 9], 
 
>   X[10, 14, 11, 13], X[8, 16, 9, 15], X[2, 5, 3, 6], X[4, 11, 1, 12]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -7, 2, -8}, {7, -1, 3, -6, 4, -5, 8, -2, 5, -4, 6, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(9/2)    -(7/2)    3      3        4                     3/2      5/2    7/2
-q       + q       - ---- + ---- - ------- + 3 Sqrt[q] - 2 q    + 2 q    - q
                      5/2    3/2   Sqrt[q]
                     q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -16    2     -12    2    2     -4    4    8    12
1 + q    + --- + q    + --- + -- + q   - q  - q  + q
            14           10    8
           q            q     q
In[8]:=
HOMFLYPT[Link[8, Alternating, 6]][a, z]
Out[8]=   
   3     5                      3
  a     a    z    z      3     z       3
-(--) + -- - -- + - - 2 a  z + -- + a z
  z     z     3   a            a
             a
In[9]:=
Kauffman[Link[8, Alternating, 6]][a, z]
Out[9]=   
      3    5                                          2      3
 4   a    a    z             3        5        2   5 z    3 z         3
a  - -- - -- - -- + a z + 2 a  z + 2 a  z - 5 z  - ---- + ---- - 3 a z  - 
     z    z     3                                    2      3
               a                                    a      a
 
                              4            5      5
     3  3    5  3      4   7 z     4  4   z    2 z         5    3  5      6
>   a  z  - a  z  + 8 z  + ---- - a  z  - -- + ---- + 2 a z  - a  z  - 3 z  - 
                             2             3    a
                            a             a
 
       6            7
    2 z     2  6   z       7
>   ---- - a  z  - -- - a z
      2            a
     a
In[10]:=
Kh[L][q, t]
Out[10]=   
    3      1        1       1       2       1      1      2            2
2 + -- + ------ + ----- + ----- + ----- + ----- + ---- + ---- + t + 2 q  t + 
     2    10  4    8  4    8  3    6  2    4  2    4      2
    q    q   t    q  t    q  t    q  t    q  t    q  t   q  t
 
     2  2    4  2    4  3    6  3    8  4
>   q  t  + q  t  + q  t  + q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L8a6
L8a5
L8a5
L8a7
L8a7