© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L8a2
L8a2
L8a4
L8a4
L8a3
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L8a3

Visit L8a3's page at Knotilus!

Acknowledgement

L8a3 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X14,8,15,7 X16,11,5,12 X12,15,13,16 X8,14,9,13 X2536 X4,9,1,10

Gauss Code: {{1, -7, 2, -8}, {7, -1, 3, -6, 8, -2, 4, -5, 6, -3, 5, -4}}

Jones Polynomial: - q-13/2 + 2q-11/2 - 4q-9/2 + 4q-7/2 - 5q-5/2 + 5q-3/2 - 4q-1/2 + 2q1/2 - q3/2

A2 (sl(3)) Invariant: q-22 + 2q-20 + q-16 + q-14 - q-12 + q-10 + q-6 + q-4 + 2 - q2 + q6

HOMFLY-PT Polynomial: - a-1z - az-1 - az + az3 + 2a3z-1 + 3a3z + 2a3z3 - 2a5z-1 - 3a5z + a7z-1

Kauffman Polynomial: a-1z - a-1z3 + z2 - 2z4 + az-1 - 3az + 3az3 - 3az5 - 3a2z2 + 4a2z4 - 3a2z6 + 2a3z-1 - 9a3z + 12a3z3 - 4a3z5 - a3z7 + a4 - 6a4z2 + 11a4z4 - 5a4z6 + 2a5z-1 - 8a5z + 11a5z3 - 2a5z5 - a5z7 - 2a6z2 + 5a6z4 - 2a6z6 + a7z-1 - 3a7z + 3a7z3 - a7z5

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 4        1
j = 2       1 
j = 0      31 
j = -2     32  
j = -4    22   
j = -6   23    
j = -8  22     
j = -10 13      
j = -12 1       
j = -141        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[8, Alternating, 3]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[8, Alternating, 3]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[14, 8, 15, 7], X[16, 11, 5, 12], 
 
>   X[12, 15, 13, 16], X[8, 14, 9, 13], X[2, 5, 3, 6], X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -7, 2, -8}, {7, -1, 3, -6, 8, -2, 4, -5, 6, -3, 5, -4}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(13/2)     2      4      4      5      5        4                   3/2
-q        + ----- - ---- + ---- - ---- + ---- - ------- + 2 Sqrt[q] - q
             11/2    9/2    7/2    5/2    3/2   Sqrt[q]
            q       q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -22    2     -16    -14    -12    -10    -6    -4    2    6
2 + q    + --- + q    + q    - q    + q    + q   + q   - q  + q
            20
           q
In[8]:=
HOMFLYPT[Link[8, Alternating, 3]][a, z]
Out[8]=   
          3      5    7
  a    2 a    2 a    a    z            3        5        3      3  3
-(-) + ---- - ---- + -- - - - a z + 3 a  z - 3 a  z + a z  + 2 a  z
  z     z      z     z    a
In[9]:=
Kauffman[Link[8, Alternating, 3]][a, z]
Out[9]=   
            3      5    7
 4   a   2 a    2 a    a    z              3        5        7      2
a  + - + ---- + ---- + -- + - - 3 a z - 9 a  z - 8 a  z - 3 a  z + z  - 
     z    z      z     z    a
 
                                   3
       2  2      4  2      6  2   z         3       3  3       5  3      7  3
>   3 a  z  - 6 a  z  - 2 a  z  - -- + 3 a z  + 12 a  z  + 11 a  z  + 3 a  z  - 
                                  a
 
       4      2  4       4  4      6  4        5      3  5      5  5    7  5
>   2 z  + 4 a  z  + 11 a  z  + 5 a  z  - 3 a z  - 4 a  z  - 2 a  z  - a  z  - 
 
       2  6      4  6      6  6    3  7    5  7
>   3 a  z  - 5 a  z  - 2 a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
    2      1        1        1        3        2       2       2       3
3 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
     2    14  6    12  5    10  5    10  4    8  4    8  3    6  3    6  2
    q    q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      2      2      3          2      4  2
>   ----- + ---- + ---- + t + q  t + q  t
     4  2    4      2
    q  t    q  t   q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L8a3
L8a2
L8a2
L8a4
L8a4