© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L7a3
L7a3
L7a5
L7a5
L7a4
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L7a4

Visit L7a4's page at Knotilus!

Acknowledgement

L7a4 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,4,11,3 X14,8,5,7 X12,10,13,9 X8,14,9,13 X2536 X4,12,1,11

Gauss Code: {{1, -6, 2, -7}, {6, -1, 3, -5, 4, -2, 7, -4, 5, -3}}

Jones Polynomial: - q-3/2 + q-1/2 - 3q1/2 + 3q3/2 - 3q5/2 + 2q7/2 - 2q9/2 + q11/2

A2 (sl(3)) Invariant: q-6 + q-4 + q-2 + 3 + q2 + q4 + q10 + q14 - q18

HOMFLY-PT Polynomial: a-5z - a-3z - a-3z3 - a-1z-1 - a-1z - a-1z3 + az-1 + az

Kauffman Polynomial: 2a-6z2 - a-6z4 - 2a-5z + 5a-5z3 - 2a-5z5 + a-4z4 - a-4z6 - 2a-3z + 5a-3z3 - 3a-3z5 - 2a-2z2 + a-2z4 - a-2z6 - a-1z-1 + 2a-1z - a-1z3 - a-1z5 + 1 - z4 - az-1 + 2az - az3

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 12       1
j = 10      1 
j = 8     11 
j = 6    21  
j = 4   11   
j = 2  22    
j = 0 13     
j = -2        
j = -41       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[7, Alternating, 4]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[7, Alternating, 4]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 4, 11, 3], X[14, 8, 5, 7], X[12, 10, 13, 9], 
 
>   X[8, 14, 9, 13], X[2, 5, 3, 6], X[4, 12, 1, 11]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -6, 2, -7}, {6, -1, 3, -5, 4, -2, 7, -4, 5, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(3/2)      1                     3/2      5/2      7/2      9/2    11/2
-q       + ------- - 3 Sqrt[q] + 3 q    - 3 q    + 2 q    - 2 q    + q
           Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -6    -4    -2    2    4    10    14    18
3 + q   + q   + q   + q  + q  + q   + q   - q
In[8]:=
HOMFLYPT[Link[7, Alternating, 4]][a, z]
Out[8]=   
                                  3    3
   1     a   z    z    z         z    z
-(---) + - + -- - -- - - + a z - -- - --
  a z    z    5    3   a          3   a
             a    a              a
In[9]:=
Kauffman[Link[7, Alternating, 4]][a, z]
Out[9]=   
                                           2      2      3      3    3
     1    a   2 z   2 z   2 z           2 z    2 z    5 z    5 z    z       3
1 - --- - - - --- - --- + --- + 2 a z + ---- - ---- + ---- + ---- - -- - a z  - 
    a z   z    5     3     a              6      2      5      3    a
              a     a                    a      a      a      a
 
          4    4    4      5      5    5    6    6
     4   z    z    z    2 z    3 z    z    z    z
>   z  - -- + -- + -- - ---- - ---- - -- - -- - --
          6    4    2     5      3    a     4    2
         a    a    a     a      a          a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1     1      2      4      4  2      6  2    6  3    8  3
3 + 2 q  + ----- + - + 2 q  t + q  t + q  t  + 2 q  t  + q  t  + q  t  + 
            4  2   t
           q  t
 
     8  4    10  4    12  5
>   q  t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L7a4
L7a3
L7a3
L7a5
L7a5