© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: |
|
![]() Knotscape |
This page is passe. Go here
instead!
The 2-Component Link L2a1Also known as "The Hopf Link". Visit L2a1's page at Knotilus! |
![]() DrawMorseLink |
Further views: |
![]() Are they forever linked? |
PD Presentation: | X4132 X2314 |
Gauss Code: | {{1, -2}, {2, -1}} |
Jones Polynomial: | - q-5/2 - q-1/2 |
A2 (sl(3)) Invariant: | q-10 + 2q-8 + 2q-6 + 2q-4 + q-2 + 1 |
HOMFLY-PT Polynomial: | - az-1 - az + a3z-1 |
Kauffman Polynomial: | az-1 - az - a2 + a3z-1 - a3z |
Khovanov Homology: |
|
Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... | |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[2, Alternating, 1]]] |
![]() | |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[2, Alternating, 1]] |
Out[4]= | PD[X[4, 1, 3, 2], X[2, 3, 1, 4]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -2}, {2, -1}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(5/2) 1 -q - ------- Sqrt[q] |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -10 2 2 2 -2 1 + q + -- + -- + -- + q 8 6 4 q q q |
In[8]:= | HOMFLYPT[Link[2, Alternating, 1]][a, z] |
Out[8]= | 3 a a -(-) + -- - a z z z |
In[9]:= | Kauffman[Link[2, Alternating, 1]][a, z] |
Out[9]= | 3 2 a a 3 -a + - + -- - a z - a z z z |
In[10]:= | Kh[L][q, t] |
Out[10]= | -2 1 1 1 + q + ----- + ----- 6 2 4 2 q t q t |
Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L2a1 |
|