© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n459
L11n459
L4a1
L4a1
L2a1
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L2a1

Also known as "The Hopf Link".

Visit L2a1's page at Knotilus!

Acknowledgement

L2a1 as Morse Link
DrawMorseLink

Further views:   Are they forever linked?
Are they forever linked?

PD Presentation: X4132 X2314

Gauss Code: {{1, -2}, {2, -1}}

Jones Polynomial: - q-5/2 - q-1/2

A2 (sl(3)) Invariant: q-10 + 2q-8 + 2q-6 + 2q-4 + q-2 + 1

HOMFLY-PT Polynomial: - az-1 - az + a3z-1

Kauffman Polynomial: az-1 - az - a2 + a3z-1 - a3z

Khovanov Homology:
trqj r = -2r = -1r = 0
j = 0  1
j = -2  1
j = -41  
j = -61  


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[2, Alternating, 1]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[2, Alternating, 1]]
Out[4]=   
PD[X[4, 1, 3, 2], X[2, 3, 1, 4]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2}, {2, -1}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(5/2)      1
-q       - -------
           Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -10   2    2    2     -2
1 + q    + -- + -- + -- + q
            8    6    4
           q    q    q
In[8]:=
HOMFLYPT[Link[2, Alternating, 1]][a, z]
Out[8]=   
        3
  a    a
-(-) + -- - a z
  z    z
In[9]:=
Kauffman[Link[2, Alternating, 1]][a, z]
Out[9]=   
           3
  2   a   a           3
-a  + - + -- - a z - a  z
      z   z
In[10]:=
Kh[L][q, t]
Out[10]=   
     -2     1       1
1 + q   + ----- + -----
           6  2    4  2
          q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L2a1
L11n459
L11n459
L4a1
L4a1