PD Presentation: |
X6172 X16,7,17,8 X4,17,1,18 X9,14,10,15 X8493 X5,11,6,10 X11,20,12,21 X19,22,20,5 X13,19,14,18 X21,12,22,13 X2,16,3,15 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 9]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 9]] |
Out[4]= | PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[9, 14, 10, 15],
> X[8, 4, 9, 3], X[5, 11, 6, 10], X[11, 20, 12, 21], X[19, 22, 20, 5],
> X[13, 19, 14, 18], X[21, 12, 22, 13], X[2, 16, 3, 15]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -11, 5, -3}, {-6, -1, 2, -5, -4, 6, -7, 10, -9, 4, 11, -2, 3, 9,
> -8, 7, -10, 8}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(13/2) -(11/2) 2 4 3 4 3
q - q + ---- - ---- + ---- - ---- + ------- - 3 Sqrt[q] +
9/2 7/2 5/2 3/2 Sqrt[q]
q q q q
3/2 5/2
> 2 q - q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -22 2 -18 -14 3 2 2 -6 -2 2 4 8
-q - --- - q + q + --- + --- + -- + q + q + q + q + q
20 12 10 8
q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 9]][a, z] |
Out[8]= | 3 5 7 3
1 2 a 3 a 3 a a 2 z 3 5 z 3
-(---) + --- - ---- + ---- - -- - --- + 5 a z - 5 a z + 2 a z - -- + 4 a z -
a z z z z z a a
3 3 5
> 2 a z + a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 9]][a, z] |
Out[9]= | 3 5 7
2 6 8 1 2 a 3 a 3 a a 4 z 3
-2 a + 2 a + a - --- - --- - ---- - ---- - -- + --- + 11 a z + 12 a z +
a z z z z z a
3
5 7 2 2 2 4 2 8 2 7 z 3
> 6 a z + a z + 5 z + 12 a z + 8 a z - a z - ---- - 20 a z -
a
5
3 3 5 3 7 3 4 2 4 4 4 6 4 5 z
> 18 a z - 6 a z - a z - 13 z - 27 a z - 15 a z - a z + ---- +
a
7
5 3 5 5 5 6 2 6 4 6 z 7
> 9 a z + 8 a z + 4 a z + 10 z + 20 a z + 10 a z - -- + 2 a z +
a
3 7 5 7 8 2 8 4 8 9 3 9
> 2 a z - a z - 2 z - 4 a z - 2 a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 3 4 1 1 1 1 1 2 2
1 + -- + -- + ------ + ------ + ------ + ------ + ----- + ------ + ----- +
4 2 14 5 12 5 12 4 10 4 8 4 10 3 8 3
q q q t q t q t q t q t q t q t
3 3 1 2 3 1 2 t 2 2 2
> ----- + ----- + ----- + ---- + ---- + ---- + 2 t + --- + t + 2 q t +
8 2 6 2 4 2 6 4 2 2
q t q t q t q t q t q t q
2 3 4 3 6 4
> q t + q t + q t |