PD Presentation: |
X6172 X12,3,13,4 X7,16,8,17 X17,22,18,5 X9,15,10,14 X19,10,20,11 X21,9,22,8 X13,18,14,19 X15,21,16,20 X2536 X4,11,1,12 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 89]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 89]] |
Out[4]= | PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[7, 16, 8, 17], X[17, 22, 18, 5],
> X[9, 15, 10, 14], X[19, 10, 20, 11], X[21, 9, 22, 8], X[13, 18, 14, 19],
> X[15, 21, 16, 20], X[2, 5, 3, 6], X[4, 11, 1, 12]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -10, 2, -11}, {10, -1, -3, 7, -5, 6, 11, -2, -8, 5, -9, 3, -4, 8,
> -6, 9, -7, 4}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(17/2) 2 2 -(9/2) 2 3 4 3
-q + ----- - ----- + q - ---- + ---- - ---- + ------- -
15/2 13/2 7/2 5/2 3/2 Sqrt[q]
q q q q q
3/2
> 3 Sqrt[q] + q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -28 2 -24 -22 -20 -18 -14 3 3 -6 -2 2
1 + q + --- - q + q - q - q - q + --- + -- + q + q + q -
26 12 8
q q q
4
> q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 89]][a, z] |
Out[8]= | 3 5 7 9
-2 a 4 a 3 a a 3 5 7 3 3 3
----- + ---- - ---- + -- - 6 a z + 8 a z - 4 a z + 3 a z - 7 a z +
z z z z
5 3 5 3 5 5 5 3 7
> 6 a z + a z - 5 a z + a z - a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 89]][a, z] |
Out[9]= | 3 5 7 9
2 4 6 8 2 a 4 a 3 a a 3 5
-a - 2 a - 3 a - a - ---- - ---- - ---- - -- + 2 a z + 15 a z + 25 a z +
z z z z
7 9 2 2 2 4 2 6 2 8 2 3
> 16 a z + 4 a z - z + 2 a z + 15 a z + 18 a z + 6 a z - 10 a z -
3 3 5 3 7 3 9 3 4 2 4 4 4
> 32 a z - 40 a z - 24 a z - 6 a z + 3 z - 3 a z - 28 a z -
6 4 8 4 5 3 5 5 5 7 5 9 5
> 36 a z - 14 a z + 12 a z + 25 a z + 14 a z + 6 a z + 5 a z -
6 2 6 4 6 6 6 8 6 7 3 7
> z + 7 a z + 18 a z + 21 a z + 11 a z - 3 a z - 5 a z +
5 7 7 7 9 7 2 8 4 8 6 8 8 8 5 9
> 3 a z + 4 a z - a z - 2 a z - 3 a z - 3 a z - 2 a z - a z -
7 9
> a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 2 4 1 1 1 1 1 2 1
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
4 2 18 8 16 7 14 7 14 6 12 6 12 5 10 5
q q q t q t q t q t q t q t q t
3 2 2 2 3 1 2 3 1
> ------ + ------ + ----- + ------ + ----- + ----- + ----- + ----- + ----- +
12 4 10 4 8 4 10 3 8 3 6 3 8 2 6 2 4 2
q t q t q t q t q t q t q t q t q t
3 2 1 2 t 2 2 2 4 3
> ---- + ---- + ---- + t + --- + t + 2 q t + q t
6 4 2 2
q t q t q t q |