© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n83
L11n83
L11n85
L11n85
L11n84
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n84

Visit L11n84's page at Knotilus!

Acknowledgement

L11n84 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,3,13,4 X14,8,15,7 X9,18,10,19 X19,5,20,22 X15,21,16,20 X21,17,22,16 X17,8,18,9 X10,14,11,13 X2536 X4,11,1,12

Gauss Code: {{1, -10, 2, -11}, {10, -1, 3, 8, -4, -9, 11, -2, 9, -3, -6, 7, -8, 4, -5, 6, -7, 5}}

Jones Polynomial: - q-9/2 + q-7/2 - 4q-5/2 + 5q-3/2 - 6q-1/2 + 6q1/2 - 5q3/2 + 4q5/2 - 3q7/2 + q9/2

A2 (sl(3)) Invariant: q-16 + 2q-14 + q-12 + 2q-10 + 3q-8 + q-4 - q-2 - 1 - q4 + 2q6 + q12 - q14

HOMFLY-PT Polynomial: a-3z + a-3z3 - 3a-1z - 3a-1z3 - a-1z5 + 2az + 2az3 - a3z-1 - 2a3z + a5z-1

Kauffman Polynomial: - a-4z2 + 3a-4z4 - a-4z6 + a-3z - 8a-3z3 + 11a-3z5 - 3a-3z7 + 2a-2z2 - 9a-2z4 + 11a-2z6 - 3a-2z8 + 2a-1z - 11a-1z3 + 10a-1z5 - a-1z9 + 8z2 - 20z4 + 16z6 - 4z8 - az - 3az5 + 3az7 - az9 + 5a2z2 - 9a2z4 + 4a2z6 - a2z8 - a3z-1 + 2a3z3 - 2a3z5 + a4 - a4z4 - a5z-1 + 2a5z - a5z3

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 10         1
j = 8        2 
j = 6       21 
j = 4      32  
j = 2     32   
j = 0    33    
j = -2   34     
j = -4  12      
j = -6  3       
j = -811        
j = -101         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 84]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 84]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[14, 8, 15, 7], X[9, 18, 10, 19], 
 
>   X[19, 5, 20, 22], X[15, 21, 16, 20], X[21, 17, 22, 16], X[17, 8, 18, 9], 
 
>   X[10, 14, 11, 13], X[2, 5, 3, 6], X[4, 11, 1, 12]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 3, 8, -4, -9, 11, -2, 9, -3, -6, 7, -8, 4, 
 
>    -5, 6, -7, 5}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(9/2)    -(7/2)    4      5        6                     3/2      5/2
-q       + q       - ---- + ---- - ------- + 6 Sqrt[q] - 5 q    + 4 q    - 
                      5/2    3/2   Sqrt[q]
                     q      q
 
       7/2    9/2
>   3 q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -16    2     -12    2    3     -4    -2    4      6    12    14
-1 + q    + --- + q    + --- + -- + q   - q   - q  + 2 q  + q   - q
             14           10    8
            q            q     q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 84]][a, z]
Out[8]=   
   3     5                                3      3             5
  a     a    z    3 z              3     z    3 z         3   z
-(--) + -- + -- - --- + 2 a z - 2 a  z + -- - ---- + 2 a z  - --
  z     z     3    a                      3    a              a
             a                           a
In[9]:=
Kauffman[Link[11, NonAlternating, 84]][a, z]
Out[9]=   
      3    5                                     2      2                3
 4   a    a    z    2 z            5        2   z    2 z       2  2   8 z
a  - -- - -- + -- + --- - a z + 2 a  z + 8 z  - -- + ---- + 5 a  z  - ---- - 
     z    z     3    a                           4     2                3
               a                                a     a                a
 
        3                                4      4                         5
    11 z       3  3    5  3       4   3 z    9 z       2  4    4  4   11 z
>   ----- + 2 a  z  - a  z  - 20 z  + ---- - ---- - 9 a  z  - a  z  + ----- + 
      a                                 4      2                        3
                                       a      a                        a
 
        5                               6       6                7
    10 z         5      3  5       6   z    11 z       2  6   3 z         7
>   ----- - 3 a z  - 2 a  z  + 16 z  - -- + ----- + 4 a  z  - ---- + 3 a z  - 
      a                                 4     2                 3
                                       a     a                 a
 
              8            9
       8   3 z     2  8   z       9
>   4 z  - ---- - a  z  - -- - a z
             2            a
            a
In[10]:=
Kh[L][q, t]
Out[10]=   
    4      1        1       1       3       1      2      3              2
3 + -- + ------ + ----- + ----- + ----- + ----- + ---- + ---- + 3 t + 3 q  t + 
     2    10  4    8  4    8  3    6  2    4  2    4      2
    q    q   t    q  t    q  t    q  t    q  t    q  t   q  t
 
       2  2      4  2      4  3      6  3    6  4      8  4    10  5
>   2 q  t  + 3 q  t  + 2 q  t  + 2 q  t  + q  t  + 2 q  t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n84
L11n83
L11n83
L11n85
L11n85