© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n64
L11n64
L11n66
L11n66
L11n65
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n65

Visit L11n65's page at Knotilus!

Acknowledgement

L11n65 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X7,14,8,15 X17,20,18,21 X11,18,12,19 X19,12,20,13 X15,22,16,5 X21,16,22,17 X13,8,14,9 X2536 X4,9,1,10

Gauss Code: {{1, -10, 2, -11}, {10, -1, -3, 9, 11, -2, -5, 6, -9, 3, -7, 8, -4, 5, -6, 4, -8, 7}}

Jones Polynomial: q-25/2 - q-23/2 + q-21/2 - 2q-17/2 + 2q-15/2 - 3q-13/2 + 3q-11/2 - 3q-9/2 + q-7/2 - q-5/2

A2 (sl(3)) Invariant: - q-40 - 2q-38 - q-36 - q-34 + q-32 + q-30 + q-28 + 2q-26 + 2q-22 + q-18 + 2q-16 + q-14 + 2q-12 + q-8

HOMFLY-PT Polynomial: - a5z-1 - 4a5z - 4a5z3 - a5z5 + a7z-1 - 3a7z3 - a7z5 - a9z-1 + 2a11z-1 + 2a11z - a13z-1

Kauffman Polynomial: a5z-1 - 4a5z + 4a5z3 - a5z5 - a6 + a6z2 + 2a6z4 - a6z6 + a7z-1 - 2a7z + a7z3 + 2a7z5 - a7z7 + 4a8z4 - 2a8z6 + a9z-1 - 3a9z + 4a9z3 - 2a9z5 - 4a10 + 16a10z2 - 20a10z4 + 8a10z6 - a10z8 + 2a11z-1 - 9a11z + 17a11z3 - 19a11z5 + 8a11z7 - a11z9 - 7a12 + 29a12z2 - 37a12z4 + 16a12z6 - 2a12z8 + a13z-1 - 4a13z + 10a13z3 - 14a13z5 + 7a13z7 - a13z9 - 3a14 + 12a14z2 - 15a14z4 + 7a14z6 - a14z8

Khovanov Homology:
trqj r = -11r = -10r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -4           1
j = -6          11
j = -8         2  
j = -10        11  
j = -12      132   
j = -14      12    
j = -16    132     
j = -18   1 1      
j = -20   12       
j = -22 11         
j = -24            
j = -261           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 65]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 65]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[7, 14, 8, 15], X[17, 20, 18, 21], 
 
>   X[11, 18, 12, 19], X[19, 12, 20, 13], X[15, 22, 16, 5], X[21, 16, 22, 17], 
 
>   X[13, 8, 14, 9], X[2, 5, 3, 6], X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, -3, 9, 11, -2, -5, 6, -9, 3, -7, 8, -4, 5, 
 
>    -6, 4, -8, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(25/2)    -(23/2)    -(21/2)     2       2       3       3      3
q        - q        + q        - ----- + ----- - ----- + ----- - ---- + 
                                  17/2    15/2    13/2    11/2    9/2
                                 q       q       q       q       q
 
     -(7/2)    -(5/2)
>   q       - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -40    2     -36    -34    -32    -30    -28    2     2     -18    2
-q    - --- - q    - q    + q    + q    + q    + --- + --- + q    + --- + 
         38                                       26    22           16
        q                                        q     q            q
 
     -14    2     -8
>   q    + --- + q
            12
           q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 65]][a, z]
Out[8]=   
   5     7    9      11    13
  a     a    a    2 a     a        5        11        5  3      7  3    5  5
-(--) + -- - -- + ----- - --- - 4 a  z + 2 a   z - 4 a  z  - 3 a  z  - a  z  - 
  z     z    z      z      z
 
     7  5
>   a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 65]][a, z]
Out[9]=   
                               5    7    9      11    13
  6      10      12      14   a    a    a    2 a     a        5        7
-a  - 4 a   - 7 a   - 3 a   + -- + -- + -- + ----- + --- - 4 a  z - 2 a  z - 
                              z    z    z      z      z
 
       9        11        13      6  2       10  2       12  2       14  2
>   3 a  z - 9 a   z - 4 a   z + a  z  + 16 a   z  + 29 a   z  + 12 a   z  + 
 
       5  3    7  3      9  3       11  3       13  3      6  4      8  4
>   4 a  z  + a  z  + 4 a  z  + 17 a   z  + 10 a   z  + 2 a  z  + 4 a  z  - 
 
        10  4       12  4       14  4    5  5      7  5      9  5       11  5
>   20 a   z  - 37 a   z  - 15 a   z  - a  z  + 2 a  z  - 2 a  z  - 19 a   z  - 
 
        13  5    6  6      8  6      10  6       12  6      14  6    7  7
>   14 a   z  - a  z  - 2 a  z  + 8 a   z  + 16 a   z  + 7 a   z  - a  z  + 
 
       11  7      13  7    10  8      12  8    14  8    11  9    13  9
>   8 a   z  + 7 a   z  - a   z  - 2 a   z  - a   z  - a   z  - a   z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -6    -4      1         1        1        1        1        2        1
q   + q   + ------- + ------- + ------ + ------ + ------ + ------ + ------ + 
             26  11    22  10    22  9    20  8    18  8    20  7    16  7
            q   t     q   t     q   t    q   t    q   t    q   t    q   t
 
      1        3        2        1        1        2        3        2
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     18  6    16  6    16  5    14  5    12  5    14  4    12  4    12  3
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      1        1        2      1
>   ------ + ------ + ----- + ----
     10  3    10  2    8  2    6
    q   t    q   t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n65
L11n64
L11n64
L11n66
L11n66