© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n46
L11n46
L11n48
L11n48
L11n47
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n47

Visit L11n47's page at Knotilus!

Acknowledgement

L11n47 as Morse Link
DrawMorseLink

PD Presentation: X6172 X18,7,19,8 X4,19,1,20 X5,14,6,15 X3849 X9,16,10,17 X15,10,16,11 X11,20,12,21 X13,22,14,5 X21,12,22,13 X17,2,18,3

Gauss Code: {{1, 11, -5, -3}, {-4, -1, 2, 5, -6, 7, -8, 10, -9, 4, -7, 6, -11, -2, 3, 8, -10, 9}}

Jones Polynomial: 2q-25/2 - 3q-23/2 + 5q-21/2 - 6q-19/2 + 5q-17/2 - 6q-15/2 + 4q-13/2 - 3q-11/2 + q-9/2 - q-7/2

A2 (sl(3)) Invariant: - q-42 - q-40 - 3q-38 - 2q-36 - q-34 + 3q-30 + q-28 + 4q-26 + 2q-24 + 2q-22 + 2q-20 + 2q-16 + q-12

HOMFLY-PT Polynomial: - a7z-1 - 6a7z - 11a7z3 - 6a7z5 - a7z7 - a9z-1 - 3a9z - 7a9z3 - 5a9z5 - a9z7 + 4a11z-1 + 8a11z + 5a11z3 + a11z5 - 2a13z-1 - a13z

Kauffman Polynomial: - a7z-1 + 6a7z - 11a7z3 + 6a7z5 - a7z7 + a8 - 2a8z2 - 3a8z4 + 4a8z6 - a8z8 + a9z-1 - 3a9z + 4a9z3 - 5a9z5 + 4a9z7 - a9z9 - 5a10 + 15a10z2 - 17a10z4 + 12a10z6 - 3a10z8 + 4a11z-1 - 16a11z + 22a11z3 - 9a11z5 + 3a11z7 - a11z9 - 6a12 + 17a12z2 - 12a12z4 + 6a12z6 - 2a12z8 + 2a13z-1 - 8a13z + 6a13z3 + a13z5 - 2a13z7 + a14 - 3a14z2 + 2a14z4 - 2a14z6 - a15z - a15z3 - a15z5 + 2a16 - 3a16z2

Khovanov Homology:
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -6         1
j = -8        11
j = -10       2  
j = -12      21  
j = -14     42   
j = -16    23    
j = -18   43     
j = -20  12      
j = -22 24       
j = -24 1        
j = -262         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 47]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 47]]
Out[4]=   
PD[X[6, 1, 7, 2], X[18, 7, 19, 8], X[4, 19, 1, 20], X[5, 14, 6, 15], 
 
>   X[3, 8, 4, 9], X[9, 16, 10, 17], X[15, 10, 16, 11], X[11, 20, 12, 21], 
 
>   X[13, 22, 14, 5], X[21, 12, 22, 13], X[17, 2, 18, 3]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 11, -5, -3}, {-4, -1, 2, 5, -6, 7, -8, 10, -9, 4, -7, 6, -11, -2, 
 
>    3, 8, -10, 9}]
In[6]:=
Jones[L][q]
Out[6]=   
  2       3       5       6       5       6       4       3      -(9/2)
----- - ----- + ----- - ----- + ----- - ----- + ----- - ----- + q       - 
 25/2    23/2    21/2    19/2    17/2    15/2    13/2    11/2
q       q       q       q       q       q       q       q
 
     -(7/2)
>   q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -42    -40    3     2     -34    3     -28    4     2     2     2     2
-q    - q    - --- - --- - q    + --- + q    + --- + --- + --- + --- + --- + 
                38    36           30           26    24    22    20    16
               q     q            q            q     q     q     q     q
 
     -12
>   q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 47]][a, z]
Out[8]=   
   7     9      11      13
  a     a    4 a     2 a        7        9        11      13         7  3
-(--) - -- + ----- - ----- - 6 a  z - 3 a  z + 8 a   z - a   z - 11 a  z  - 
  z     z      z       z
 
       9  3      11  3      7  5      9  5    11  5    7  7    9  7
>   7 a  z  + 5 a   z  - 6 a  z  - 5 a  z  + a   z  - a  z  - a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 47]][a, z]
Out[9]=   
                                    7    9      11      13
 8      10      12    14      16   a    a    4 a     2 a        7        9
a  - 5 a   - 6 a   + a   + 2 a   - -- + -- + ----- + ----- + 6 a  z - 3 a  z - 
                                   z    z      z       z
 
        11        13      15        8  2       10  2       12  2      14  2
>   16 a   z - 8 a   z - a   z - 2 a  z  + 15 a   z  + 17 a   z  - 3 a   z  - 
 
       16  2       7  3      9  3       11  3      13  3    15  3      8  4
>   3 a   z  - 11 a  z  + 4 a  z  + 22 a   z  + 6 a   z  - a   z  - 3 a  z  - 
 
        10  4       12  4      14  4      7  5      9  5      11  5    13  5
>   17 a   z  - 12 a   z  + 2 a   z  + 6 a  z  - 5 a  z  - 9 a   z  + a   z  - 
 
     15  5      8  6       10  6      12  6      14  6    7  7      9  7
>   a   z  + 4 a  z  + 12 a   z  + 6 a   z  - 2 a   z  - a  z  + 4 a  z  + 
 
       11  7      13  7    8  8      10  8      12  8    9  9    11  9
>   3 a   z  - 2 a   z  - a  z  - 3 a   z  - 2 a   z  - a  z  - a   z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -8    -6     2        1        2        4        1        2        4
q   + q   + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
             26  9    24  8    22  8    22  7    20  7    20  6    18  6
            q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      3        2        3        4        2        2        1        2       1
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + ----
     18  5    16  5    16  4    14  4    14  3    12  3    12  2    10  2    8
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n47
L11n46
L11n46
L11n48
L11n48