© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n441
L11n441
L11n443
L11n443
L11n442
Knotscape
This page is passe. Go here instead!

The 4-Component Link

L11n442

Visit L11n442's page at Knotilus!

Acknowledgement

L11n442 as Morse Link
DrawMorseLink

PD Presentation: X6172 X2536 X11,19,12,18 X3,11,4,10 X9,1,10,4 X7,17,8,16 X15,5,16,8 X13,20,14,21 X19,15,20,22 X21,12,22,13 X17,9,18,14

Gauss Code: {{1, -2, -4, 5}, {2, -1, -6, 7}, {-5, 4, -3, 10, -8, 11}, {-7, 6, -11, 3, -9, 8, -10, 9}}

Jones Polynomial: - 3q-3/2 + 5q-1/2 - 10q1/2 + 10q3/2 - 14q5/2 + 10q7/2 - 10q9/2 + 6q11/2 - 3q13/2 + q15/2

A2 (sl(3)) Invariant: 3q-6 + 3q-4 + 2q-2 + 9 + 7q2 + 11q4 + 13q6 + 10q8 + 12q10 + 5q12 + 6q14 + 3q16 - 2q18 + q20 - q22 - q24

HOMFLY-PT Polynomial: a-7z-1 + a-7z - a-5z-3 - 5a-5z-1 - 6a-5z - 3a-5z3 + 3a-3z-3 + 10a-3z-1 + 13a-3z + 7a-3z3 + 2a-3z5 - 3a-1z-3 - 9a-1z-1 - 11a-1z - 5a-1z3 + az-3 + 3az-1 + 3az

Kauffman Polynomial: a-8 - 3a-8z2 + 3a-8z4 - a-8z6 - 2a-7z-1 + 6a-7z - 9a-7z3 + 9a-7z5 - 3a-7z7 + 6a-6 - 14a-6z2 + 11a-6z4 + 3a-6z6 - 3a-6z8 + a-5z-3 - 11a-5z-1 + 30a-5z - 47a-5z3 + 40a-5z5 - 10a-5z7 - a-5z9 - 3a-4z-2 + 18a-4 - 28a-4z2 + 9a-4z4 + 14a-4z6 - 8a-4z8 + 3a-3z-3 - 18a-3z-1 + 49a-3z - 74a-3z3 + 53a-3z5 - 14a-3z7 - a-3z9 - 6a-2z-2 + 21a-2 - 24a-2z2 + 4a-2z4 + 7a-2z6 - 5a-2z8 + 3a-1z-3 - 14a-1z-1 + 35a-1z - 42a-1z3 + 22a-1z5 - 7a-1z7 - 3z-2 + 9 - 7z2 + 3z4 - 3z6 + az-3 - 5az-1 + 10az - 6az3

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 16         1
j = 14        2 
j = 12       41 
j = 10      62  
j = 8     55   
j = 6    95    
j = 4   48     
j = 2  66      
j = 0 27       
j = -213        
j = -43         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
4
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 442]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 442]]
Out[4]=   
PD[X[6, 1, 7, 2], X[2, 5, 3, 6], X[11, 19, 12, 18], X[3, 11, 4, 10], 
 
>   X[9, 1, 10, 4], X[7, 17, 8, 16], X[15, 5, 16, 8], X[13, 20, 14, 21], 
 
>   X[19, 15, 20, 22], X[21, 12, 22, 13], X[17, 9, 18, 14]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, -4, 5}, {2, -1, -6, 7}, {-5, 4, -3, 10, -8, 11}, 
 
>   {-7, 6, -11, 3, -9, 8, -10, 9}]
In[6]:=
Jones[L][q]
Out[6]=   
 -3       5                       3/2       5/2       7/2       9/2      11/2
---- + ------- - 10 Sqrt[q] + 10 q    - 14 q    + 10 q    - 10 q    + 6 q     - 
 3/2   Sqrt[q]
q
 
       13/2    15/2
>   3 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
    3    3    2       2       4       6       8       10      12      14
9 + -- + -- + -- + 7 q  + 11 q  + 13 q  + 10 q  + 12 q   + 5 q   + 6 q   + 
     6    4    2
    q    q    q
 
       16      18    20    22    24
>   3 q   - 2 q   + q   - q   - q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 442]][a, z]
Out[8]=   
    1        3      3     a     1      5      10     9    3 a   z    6 z
-(-----) + ----- - ---- + -- + ---- - ---- + ---- - --- + --- + -- - --- + 
   5  3     3  3      3    3    7      5      3     a z    z     7    5
  a  z     a  z    a z    z    a  z   a  z   a  z               a    a
 
                             3      3      3      5
    13 z   11 z           3 z    7 z    5 z    2 z
>   ---- - ---- + 3 a z - ---- + ---- - ---- + ----
      3     a               5      3     a       3
     a                     a      a             a
In[9]:=
Kauffman[Link[11, NonAlternating, 442]][a, z]
Out[9]=   
     -8   6    18   21     1       3      3     a    3      3       6
9 + a   + -- + -- + -- + ----- + ----- + ---- + -- - -- - ----- - ----- - 
           6    4    2    5  3    3  3      3    3    2    4  2    2  2
          a    a    a    a  z    a  z    a z    z    z    a  z    a  z
 
     2      11     18    14    5 a   6 z   30 z   49 z   35 z               2
>   ---- - ---- - ---- - --- - --- + --- + ---- + ---- + ---- + 10 a z - 7 z  - 
     7      5      3     a z    z     7      5      3     a
    a  z   a  z   a  z               a      a      a
 
       2       2       2       2      3       3       3       3
    3 z    14 z    28 z    24 z    9 z    47 z    74 z    42 z         3
>   ---- - ----- - ----- - ----- - ---- - ----- - ----- - ----- - 6 a z  + 
      8      6       4       2       7      5       3       a
     a      a       a       a       a      a       a
 
              4       4      4      4      5       5       5       5
       4   3 z    11 z    9 z    4 z    9 z    40 z    53 z    22 z       6
>   3 z  + ---- + ----- + ---- + ---- + ---- + ----- + ----- + ----- - 3 z  - 
             8      6       4      2      7      5       3       a
            a      a       a      a      a      a       a
 
     6      6       6      6      7       7       7      7      8      8
    z    3 z    14 z    7 z    3 z    10 z    14 z    7 z    3 z    8 z
>   -- + ---- + ----- + ---- - ---- - ----- - ----- - ---- - ---- - ---- - 
     8     6      4       2      7      5       3      a       6      4
    a     a      a       a      a      a       a              a      a
 
       8    9    9
    5 z    z    z
>   ---- - -- - --
      2     5    3
     a     a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     3       1     2    3        2        4        4  2      6  2
7 + 6 q  + ----- + ----- + - + ---- + 6 q  t + 4 q  t + 8 q  t  + 9 q  t  + 
            4  2    2  2   t    2
           q  t    q  t        q  t
 
       6  3      8  3      8  4      10  4      10  5      12  5    12  6
>   5 q  t  + 5 q  t  + 5 q  t  + 6 q   t  + 2 q   t  + 4 q   t  + q   t  + 
 
       14  6    16  7
>   2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n442
L11n441
L11n441
L11n443
L11n443