© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n425
L11n425
L11n427
L11n427
L11n426
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n426

Visit L11n426's page at Knotilus!

Acknowledgement

L11n426 as Morse Link
DrawMorseLink

PD Presentation: X8192 X16,8,17,7 X14,6,15,5 X3,10,4,11 X4,14,5,13 X17,2,18,3 X9,19,10,18 X12,21,7,22 X22,11,13,12 X20,16,21,15 X6,19,1,20

Gauss Code: {{1, 6, -4, -5, 3, -11}, {2, -1, -7, 4, 9, -8}, {5, -3, 10, -2, -6, 7, 11, -10, 8, -9}}

Jones Polynomial: q-5 - q-4 + q-3 + q-1 + 2 + q2 - q3

A2 (sl(3)) Invariant: q-16 + q-14 + 2q-12 + 2q-10 + 2q-8 + 3q-6 + 3q-4 + 6q-2 + 5 + 4q2 + q4 - q6 - q8 - q10

HOMFLY-PT Polynomial: - 2a-2 - a-2z2 + z-2 + 7 + 5z2 + z4 - 2a2z-2 - 7a2 - 5a2z2 - a2z4 + a4z-2 + 2a4 + a4z2

Kauffman Polynomial: - 2a-3z + a-3z3 + 4a-2 - 4a-2z2 + a-2z4 - 6a-1z + 5a-1z3 - a-1z5 - z-2 + 13 - 24z2 + 21z4 - 8z6 + z8 + 2az-1 - 7az - 3az3 + 13az5 - 7az7 + az9 - 2a2z-2 + 13a2 - 32a2z2 + 35a2z4 - 15a2z6 + 2a2z8 + 2a3z-1 - 3a3z - 7a3z3 + 14a3z5 - 7a3z7 + a3z9 - a4z-2 + 5a4 - 12a4z2 + 15a4z4 - 7a4z6 + a4z8

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 7         1
j = 5          
j = 3      111 
j = 1      2   
j = -1    113   
j = -3   12     
j = -5   12     
j = -7 11       
j = -9          
j = -111         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 426]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 426]]
Out[4]=   
PD[X[8, 1, 9, 2], X[16, 8, 17, 7], X[14, 6, 15, 5], X[3, 10, 4, 11], 
 
>   X[4, 14, 5, 13], X[17, 2, 18, 3], X[9, 19, 10, 18], X[12, 21, 7, 22], 
 
>   X[22, 11, 13, 12], X[20, 16, 21, 15], X[6, 19, 1, 20]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 6, -4, -5, 3, -11}, {2, -1, -7, 4, 9, -8}, 
 
>   {5, -3, 10, -2, -6, 7, 11, -10, 8, -9}]
In[6]:=
Jones[L][q]
Out[6]=   
     -5    -4    -3   1    2    3
2 + q   - q   + q   + - + q  - q
                      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -16    -14    2     2    2    3    3    6       2    4    6    8    10
5 + q    + q    + --- + --- + -- + -- + -- + -- + 4 q  + q  - q  - q  - q
                   12    10    8    6    4    2
                  q     q     q    q    q    q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 426]][a, z]
Out[8]=   
                                2    4           2
    2       2      4    -2   2 a    a       2   z       2  2    4  2    4
7 - -- - 7 a  + 2 a  + z   - ---- + -- + 5 z  - -- - 5 a  z  + a  z  + z  - 
     2                         2     2           2
    a                         z     z           a
 
     2  4
>   a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 426]][a, z]
Out[9]=   
                                  2    4            3
     4        2      4    -2   2 a    a    2 a   2 a    2 z   6 z
13 + -- + 13 a  + 5 a  - z   - ---- - -- + --- + ---- - --- - --- - 7 a z - 
      2                          2     2    z     z      3     a
     a                          z     z                 a
 
                        2                          3      3
       3         2   4 z        2  2       4  2   z    5 z         3
>   3 a  z - 24 z  - ---- - 32 a  z  - 12 a  z  + -- + ---- - 3 a z  - 
                       2                           3    a
                      a                           a
 
                       4                          5
       3  3       4   z        2  4       4  4   z          5       3  5
>   7 a  z  + 21 z  + -- + 35 a  z  + 15 a  z  - -- + 13 a z  + 14 a  z  - 
                       2                         a
                      a
 
       6       2  6      4  6        7      3  7    8      2  8    4  8
>   8 z  - 15 a  z  - 7 a  z  - 7 a z  - 7 a  z  + z  + 2 a  z  + a  z  + 
 
       9    3  9
>   a z  + a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
3          3     1        1       1       1       1       2       2      1
- + 2 q + q  + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + 
q               11  6    7  5    7  4    5  3    3  3    5  2    3  2      2
               q   t    q  t    q  t    q  t    q  t    q  t    q  t    q t
 
     1     3      3  2    7  3
>   --- + q  t + q  t  + q  t
    q t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n426
L11n425
L11n425
L11n427
L11n427