© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n418
L11n418
L11n420
L11n420
L11n419
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n419

Visit L11n419's page at Knotilus!

Acknowledgement

L11n419 as Morse Link
DrawMorseLink

PD Presentation: X8192 X16,8,17,7 X3,10,4,11 X2,18,3,17 X9,19,10,18 X20,12,21,11 X5,14,6,15 X15,13,16,22 X13,6,14,1 X19,5,20,4 X12,22,7,21

Gauss Code: {{1, -4, -3, 10, -7, 9}, {2, -1, -5, 3, 6, -11}, {-9, 7, -8, -2, 4, 5, -10, -6, 11, 8}}

Jones Polynomial: 2q-1 - 2 + 4q - 4q2 + 5q3 - 3q4 + 3q5 - q6

A2 (sl(3)) Invariant: 2q-4 + 2q-2 + 3 + 4q2 + q4 + 3q6 + 2q8 + 4q10 + 4q12 + 2q14 + 2q16 - q18 - q20

HOMFLY-PT Polynomial: - a-6 + a-4z-2 + 5a-4 + 3a-4z2 - 2a-2z-2 - 8a-2 - 7a-2z2 - 2a-2z4 + z-2 + 4 + 2z2

Kauffman Polynomial: - a-7z + a-7z3 + a-6 - 4a-6z2 + 3a-6z4 - 3a-5z + 7a-5z3 - 3a-5z5 + a-5z7 - a-4z-2 + 8a-4 - 18a-4z2 + 16a-4z4 - 5a-4z6 + a-4z8 + 2a-3z-1 - 8a-3z + 11a-3z3 - 6a-3z5 + 2a-3z7 - 2a-2z-2 + 12a-2 - 23a-2z2 + 16a-2z4 - 5a-2z6 + a-2z8 + 2a-1z-1 - 6a-1z + 5a-1z3 - 3a-1z5 + a-1z7 - z-2 + 6 - 9z2 + 3z4

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 13       1
j = 11      2 
j = 9     22 
j = 7    31  
j = 5   23   
j = 3  22    
j = 1 13     
j = -111      
j = -32       


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 419]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 419]]
Out[4]=   
PD[X[8, 1, 9, 2], X[16, 8, 17, 7], X[3, 10, 4, 11], X[2, 18, 3, 17], 
 
>   X[9, 19, 10, 18], X[20, 12, 21, 11], X[5, 14, 6, 15], X[15, 13, 16, 22], 
 
>   X[13, 6, 14, 1], X[19, 5, 20, 4], X[12, 22, 7, 21]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, -3, 10, -7, 9}, {2, -1, -5, 3, 6, -11}, 
 
>   {-9, 7, -8, -2, 4, 5, -10, -6, 11, 8}]
In[6]:=
Jones[L][q]
Out[6]=   
     2            2      3      4      5    6
-2 + - + 4 q - 4 q  + 5 q  - 3 q  + 3 q  - q
     q
In[7]:=
A2Invariant[L][q]
Out[7]=   
    2    2       2    4      6      8      10      12      14      16    18
3 + -- + -- + 4 q  + q  + 3 q  + 2 q  + 4 q   + 4 q   + 2 q   + 2 q   - q   - 
     4    2
    q    q
 
     20
>   q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 419]][a, z]
Out[8]=   
                                                    2      2      4
     -6   5    8     -2     1       2        2   3 z    7 z    2 z
4 - a   + -- - -- + z   + ----- - ----- + 2 z  + ---- - ---- - ----
           4    2          4  2    2  2            4      2      2
          a    a          a  z    a  z            a      a      a
In[9]:=
Kauffman[Link[11, NonAlternating, 419]][a, z]
Out[9]=   
     -6   8    12    -2     1       2      2      2    z    3 z   8 z   6 z
6 + a   + -- + -- - z   - ----- - ----- + ---- + --- - -- - --- - --- - --- - 
           4    2          4  2    2  2    3     a z    7    5     3     a
          a    a          a  z    a  z    a  z         a    a     a
 
              2       2       2    3      3       3      3             4
       2   4 z    18 z    23 z    z    7 z    11 z    5 z       4   3 z
>   9 z  - ---- - ----- - ----- + -- + ---- + ----- + ---- + 3 z  + ---- + 
             6      4       2      7     5      3      a              6
            a      a       a      a     a      a                     a
 
        4       4      5      5      5      6      6    7      7    7    8    8
    16 z    16 z    3 z    6 z    3 z    5 z    5 z    z    2 z    z    z    z
>   ----- + ----- - ---- - ---- - ---- - ---- - ---- + -- + ---- + -- + -- + --
      4       2       5      3     a       4      2     5     3    a     4    2
     a       a       a      a             a      a     a     a          a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
         3     2      1      1    q      3        5        5  2      7  2
3 q + 2 q  + ----- + ---- + --- + - + 2 q  t + 2 q  t + 3 q  t  + 3 q  t  + 
              3  2      2   q t   t
             q  t    q t
 
     7  3      9  3      9  4      11  4    13  5
>   q  t  + 2 q  t  + 2 q  t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n419
L11n418
L11n418
L11n420
L11n420