PD Presentation: |
X8192 X5,15,6,14 X10,3,11,4 X13,5,14,4 X2738 X6,9,1,10 X11,18,12,19 X17,12,18,7 X20,16,21,15 X22,20,13,19 X16,22,17,21 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 3 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 413]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 413]] |
Out[4]= | PD[X[8, 1, 9, 2], X[5, 15, 6, 14], X[10, 3, 11, 4], X[13, 5, 14, 4],
> X[2, 7, 3, 8], X[6, 9, 1, 10], X[11, 18, 12, 19], X[17, 12, 18, 7],
> X[20, 16, 21, 15], X[22, 20, 13, 19], X[16, 22, 17, 21]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -5, 3, 4, -2, -6}, {5, -1, 6, -3, -7, 8},
> {-4, 2, 9, -11, -8, 7, 10, -9, 11, -10}] |
In[6]:= | Jones[L][q] |
Out[6]= | -5 -3 2 2 2 3 4 5
4 + q + q + -- - - - 4 q + 4 q - 3 q + 2 q - q
2 q
q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -16 2 4 5 7 7 3 3 2 4 6 8 10 16
-1 + q + --- + --- + --- + -- + -- + -- + -- - q - q - q + q - q - q
14 12 10 8 6 4 2
q q q q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 413]][a, z] |
Out[8]= | 2 4 2 2
-4 -2 2 4 4 1 5 a 2 a 2 z 2 z
6 - a + a - 9 a + 3 a + -- - ----- - ---- + ---- + 3 z - -- + ---- -
2 2 2 2 2 4 2
z a z z z a a
4
2 2 4 2 4 z 2 4
> 6 a z + a z + z + -- - a z
2
a |
In[9]:= | Kauffman[Link[11, NonAlternating, 413]][a, z] |
Out[9]= | 2 4 3
-4 2 4 4 1 5 a 2 a 1 5 9 a 5 a
13 - a + 22 a + 11 a - -- - ----- - ---- - ---- + ---- + --- + --- + ---- +
2 2 2 2 2 3 a z z z
z a z z z a z
2 2
z 2 z 19 z 3 2 3 z 3 z 2 2
> -- - --- - ---- - 35 a z - 19 a z - 16 z + ---- + ---- - 39 a z -
5 3 a 4 2
a a a a
3 3 3 4 4
4 2 3 z 4 z 26 z 3 3 3 4 6 z z
> 23 a z - ---- + ---- + ----- + 41 a z + 22 a z + 15 z - ---- - -- +
5 3 a 4 2
a a a a
5 5 5 6
2 4 4 4 z 6 z 14 z 5 3 5 6 2 z
> 31 a z + 21 a z + -- - ---- - ----- - 16 a z - 9 a z - 6 z + ---- -
5 3 a 4
a a a
6 7 7 8
2 z 2 6 4 6 2 z 3 z 7 3 7 8 z
> ---- - 10 a z - 8 a z + ---- + ---- + 2 a z + a z + z + -- +
2 3 a 2
a a a
2 8 4 8
> a z + a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 4 1 1 1 1 3 2 1 2 q
- + 3 q + ------ + ----- + ----- + ----- + ----- + ----- + ---- + --- + - +
q 11 6 9 6 7 4 3 3 5 2 3 2 3 q t t
q t q t q t q t q t q t q t
3 3 2 5 2 5 3 7 3 7 4 9 4
> 2 q t + 2 q t + 2 q t + 2 q t + q t + 2 q t + q t + q t +
11 5
> q t |