© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n409
L11n409
L11n411
L11n411
L11n410
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n410

Visit L11n410's page at Knotilus!

Acknowledgement

L11n410 as Morse Link
DrawMorseLink

PD Presentation: X6172 X3,13,4,12 X13,22,14,19 X7,20,8,21 X19,10,20,11 X9,16,10,17 X17,14,18,15 X15,8,16,9 X21,18,22,5 X2536 X11,1,12,4

Gauss Code: {{1, -10, -2, 11}, {-5, 4, -9, 3}, {10, -1, -4, 8, -6, 5, -11, 2, -3, 7, -8, 6, -7, 9}}

Jones Polynomial: - 3q-9 + 7q-8 - 10q-7 + 13q-6 - 13q-5 + 14q-4 - 9q-3 + 7q-2 - 3q-1 + 1

A2 (sl(3)) Invariant: - q-32 - q-30 - 4q-28 - q-26 + q-24 - q-22 + 6q-20 + 3q-18 + 7q-16 + 7q-14 + 3q-12 + 6q-10 - q-8 + 2q-6 + q-4 - q-2 + 1

HOMFLY-PT Polynomial: a2 + 2a2z2 + a2z4 + 2a4z-2 + 4a4 + a4z2 - 2a4z4 - a4z6 - 5a6z-2 - 10a6 - 6a6z2 - 3a6z4 - a6z6 + 4a8z-2 + 6a8 + 3a8z2 + a8z4 - a10z-2 - a10

Kauffman Polynomial: - a2 + 3a2z2 - 3a2z4 + a2z6 + 5a3z3 - 8a3z5 + 3a3z7 - 2a4z-2 + 6a4 - 5a4z2 + 5a4z4 - 9a4z6 + 4a4z8 + 5a5z-1 - 15a5z + 23a5z3 - 22a5z5 + 4a5z7 + 2a5z9 - 5a6z-2 + 16a6 - 25a6z2 + 30a6z4 - 29a6z6 + 11a6z8 + 9a7z-1 - 30a7z + 41a7z3 - 33a7z5 + 9a7z7 + 2a7z9 - 4a8z-2 + 13a8 - 23a8z2 + 25a8z4 - 16a8z6 + 7a8z8 + 5a9z-1 - 20a9z + 29a9z3 - 19a9z5 + 8a9z7 - a10z-2 + 3a10 - 6a10z2 + 3a10z4 + 3a10z6 + a11z-1 - 5a11z + 6a11z3

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 1         1
j = -1        2 
j = -3       51 
j = -5      64  
j = -7     83   
j = -9    56    
j = -11   88     
j = -13  47      
j = -15 36       
j = -17 4        
j = -193         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 410]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 410]]
Out[4]=   
PD[X[6, 1, 7, 2], X[3, 13, 4, 12], X[13, 22, 14, 19], X[7, 20, 8, 21], 
 
>   X[19, 10, 20, 11], X[9, 16, 10, 17], X[17, 14, 18, 15], X[15, 8, 16, 9], 
 
>   X[21, 18, 22, 5], X[2, 5, 3, 6], X[11, 1, 12, 4]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, -2, 11}, {-5, 4, -9, 3}, 
 
>   {10, -1, -4, 8, -6, 5, -11, 2, -3, 7, -8, 6, -7, 9}]
In[6]:=
Jones[L][q]
Out[6]=   
    3    7    10   13   13   14   9    7    3
1 - -- + -- - -- + -- - -- + -- - -- + -- - -
     9    8    7    6    5    4    3    2   q
    q    q    q    q    q    q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -32    -30    4     -26    -24    -22    6     3     7     7     3
1 - q    - q    - --- - q    + q    - q    + --- + --- + --- + --- + --- + 
                   28                         20    18    16    14    12
                  q                          q     q     q     q     q
 
     6     -8   2     -4    -2
>   --- - q   + -- + q   - q
     10          6
    q           q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 410]][a, z]
Out[8]=   
                                    4      6      8    10
 2      4       6      8    10   2 a    5 a    4 a    a        2  2    4  2
a  + 4 a  - 10 a  + 6 a  - a   + ---- - ---- + ---- - --- + 2 a  z  + a  z  - 
                                   2      2      2     2
                                  z      z      z     z
 
       6  2      8  2    2  4      4  4      6  4    8  4    4  6    6  6
>   6 a  z  + 3 a  z  + a  z  - 2 a  z  - 3 a  z  + a  z  - a  z  - a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 410]][a, z]
Out[9]=   
                                        4      6      8    10      5      7
  2      4       6       8      10   2 a    5 a    4 a    a     5 a    9 a
-a  + 6 a  + 16 a  + 13 a  + 3 a   - ---- - ---- - ---- - --- + ---- + ---- + 
                                       2      2      2     2     z      z
                                      z      z      z     z
 
       9    11
    5 a    a         5         7         9        11        2  2      4  2
>   ---- + --- - 15 a  z - 30 a  z - 20 a  z - 5 a   z + 3 a  z  - 5 a  z  - 
     z      z
 
        6  2       8  2      10  2      3  3       5  3       7  3       9  3
>   25 a  z  - 23 a  z  - 6 a   z  + 5 a  z  + 23 a  z  + 41 a  z  + 29 a  z  + 
 
       11  3      2  4      4  4       6  4       8  4      10  4      3  5
>   6 a   z  - 3 a  z  + 5 a  z  + 30 a  z  + 25 a  z  + 3 a   z  - 8 a  z  - 
 
        5  5       7  5       9  5    2  6      4  6       6  6       8  6
>   22 a  z  - 33 a  z  - 19 a  z  + a  z  - 9 a  z  - 29 a  z  - 16 a  z  + 
 
       10  6      3  7      5  7      7  7      9  7      4  8       6  8
>   3 a   z  + 3 a  z  + 4 a  z  + 9 a  z  + 8 a  z  + 4 a  z  + 11 a  z  + 
 
       8  8      5  9      7  9
>   7 a  z  + 2 a  z  + 2 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
4    5      3        4        3        6        4        7        8
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 5    3    19  7    17  6    15  6    15  5    13  5    13  4    11  4
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      8        5       6       8      3      6     t    2 t      2
>   ------ + ----- + ----- + ----- + ---- + ---- + -- + --- + q t
     11  3    9  3    9  2    7  2    7      5      3    q
    q   t    q  t    q  t    q  t    q  t   q  t   q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n410
L11n409
L11n409
L11n411
L11n411