© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n404
L11n404
L11n406
L11n406
L11n405
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n405

Visit L11n405's page at Knotilus!

Acknowledgement

L11n405 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,7,15,8 X16,9,17,10 X8,15,9,16 X4,17,1,18 X22,12,19,11 X10,4,11,3 X5,21,6,20 X21,5,22,18 X12,20,13,19 X2,14,3,13

Gauss Code: {{1, -11, 7, -5}, {10, 8, -9, -6}, {-8, -1, 2, -4, 3, -7, 6, -10, 11, -2, 4, -3, 5, 9}}

Jones Polynomial: - q-5 + 3q-4 - 6q-3 + 8q-2 - 10q-1 + 12 - 9q + 8q2 - 4q3 + 3q4

A2 (sl(3)) Invariant: - q-14 + q-12 - 2q-10 - 2q-6 - 3q-4 + 2q-2 - 1 + 6q2 + 3q4 + 6q6 + 7q8 + 4q10 + 5q12 + q14 + q16

HOMFLY-PT Polynomial: 2a-4z-2 + 3a-4 + a-4z2 - 5a-2z-2 - 11a-2 - 10a-2z2 - 5a-2z4 - a-2z6 + 4z-2 + 11 + 14z2 + 13z4 + 6z6 + z8 - a2z-2 - 3a2 - 5a2z2 - 4a2z4 - a2z6

Kauffman Polynomial: - 2a-4z-2 + 10a-4 - 17a-4z2 + 6a-4z4 + 5a-3z-1 - 15a-3z + 14a-3z3 - 9a-3z5 + 3a-3z7 - 5a-2z-2 + 22a-2 - 45a-2z2 + 46a-2z4 - 22a-2z6 + 5a-2z8 + 9a-1z-1 - 29a-1z + 34a-1z3 - 12a-1z5 - a-1z7 + 2a-1z9 - 4z-2 + 17 - 38z2 + 56z4 - 34z6 + 9z8 + 5az-1 - 17az + 23az3 - 11az5 + 2az9 - a2z-2 + 4a2 - 9a2z2 + 10a2z4 - 9a2z6 + 4a2z8 + a3z-1 - 2a3z + a3z3 - 7a3z5 + 4a3z7 + a4z2 - 6a4z4 + 3a4z6 + a5z - 2a5z3 + a5z5

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 9         3
j = 7        32
j = 5       51 
j = 3      43  
j = 1     85   
j = -1    46    
j = -3   46     
j = -5  24      
j = -7 14       
j = -9 2        
j = -111         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 405]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 405]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[16, 9, 17, 10], X[8, 15, 9, 16], 
 
>   X[4, 17, 1, 18], X[22, 12, 19, 11], X[10, 4, 11, 3], X[5, 21, 6, 20], 
 
>   X[21, 5, 22, 18], X[12, 20, 13, 19], X[2, 14, 3, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -11, 7, -5}, {10, 8, -9, -6}, 
 
>   {-8, -1, 2, -4, 3, -7, 6, -10, 11, -2, 4, -3, 5, 9}]
In[6]:=
Jones[L][q]
Out[6]=   
      -5   3    6    8    10            2      3      4
12 - q   + -- - -- + -- - -- - 9 q + 8 q  - 4 q  + 3 q
            4    3    2   q
           q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -14    -12    2    2    3    2       2      4      6      8      10
-1 - q    + q    - --- - -- - -- + -- + 6 q  + 3 q  + 6 q  + 7 q  + 4 q   + 
                    10    6    4    2
                   q     q    q    q
 
       12    14    16
>   5 q   + q   + q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 405]][a, z]
Out[8]=   
                                            2            2       2
     3    11      2   4      2       5     a        2   z    10 z       2  2
11 + -- - -- - 3 a  + -- + ----- - ----- - -- + 14 z  + -- - ----- - 5 a  z  + 
      4    2           2    4  2    2  2    2            4     2
     a    a           z    a  z    a  z    z            a     a
 
               4                     6
        4   5 z       2  4      6   z     2  6    8
>   13 z  - ---- - 4 a  z  + 6 z  - -- - a  z  + z
              2                      2
             a                      a
In[9]:=
Kauffman[Link[11, NonAlternating, 405]][a, z]
Out[9]=   
                                            2                       3
     10   22      2   4      2       5     a     5      9    5 a   a    15 z
17 + -- + -- + 4 a  - -- - ----- - ----- - -- + ---- + --- + --- + -- - ---- - 
      4    2           2    4  2    2  2    2    3     a z    z    z      3
     a    a           z    a  z    a  z    z    a  z                     a
 
                                                2       2
    29 z               3      5         2   17 z    45 z       2  2    4  2
>   ---- - 17 a z - 2 a  z + a  z - 38 z  - ----- - ----- - 9 a  z  + a  z  + 
     a                                        4       2
                                             a       a
 
        3       3                                          4       4
    14 z    34 z          3    3  3      5  3       4   6 z    46 z
>   ----- + ----- + 23 a z  + a  z  - 2 a  z  + 56 z  + ---- + ----- + 
      3       a                                           4      2
     a                                                   a      a
 
                            5       5
        2  4      4  4   9 z    12 z          5      3  5    5  5       6
>   10 a  z  - 6 a  z  - ---- - ----- - 11 a z  - 7 a  z  + a  z  - 34 z  - 
                           3      a
                          a
 
        6                          7    7                       8
    22 z       2  6      4  6   3 z    z       3  7      8   5 z       2  8
>   ----- - 9 a  z  + 3 a  z  + ---- - -- + 4 a  z  + 9 z  + ---- + 4 a  z  + 
      2                           3    a                       2
     a                           a                            a
 
       9
    2 z         9
>   ---- + 2 a z
     a
In[10]:=
Kh[L][q, t]
Out[10]=   
6           1        2       1       4       2       4       4      6      4
- + 8 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
q          11  5    9  4    7  4    7  3    5  3    5  2    3  2    3     q t
          q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
               3        3  2      5  2    5  3      7  3      7  4      9  4
>   5 q t + 4 q  t + 3 q  t  + 5 q  t  + q  t  + 3 q  t  + 2 q  t  + 3 q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n405
L11n404
L11n404
L11n406
L11n406