© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n395
L11n395
L11n397
L11n397
L11n396
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n396

Visit L11n396's page at Knotilus!

Acknowledgement

L11n396 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,7,15,8 X4,15,1,16 X9,22,10,19 X8493 X21,17,22,16 X11,5,12,18 X5,21,6,20 X17,11,18,10 X19,12,20,13 X2,14,3,13

Gauss Code: {{1, -11, 5, -3}, {-10, 8, -6, 4}, {-8, -1, 2, -5, -4, 9, -7, 10, 11, -2, 3, 6, -9, 7}}

Jones Polynomial: - q-4 + 2q-3 - 2q-2 + 3q-1 + 1 + q + q2 - 2q3 + 2q4 - 2q5 + q6

A2 (sl(3)) Invariant: - q-12 - q-8 + 2q-6 + 4q-4 + 7q-2 + 9 + 5q2 + 4q4 - q6 - q8 - q10 - q12 + q14 + q18

HOMFLY-PT Polynomial: 2a-4 + 3a-4z2 + a-4z4 + a-2z-2 - 6a-2 - 11a-2z2 - 6a-2z4 - a-2z6 - 2z-2 + 6 + 11z2 + 6z4 + z6 + a2z-2 - 2a2 - 3a2z2 - a2z4

Kauffman Polynomial: 2a-6z2 - 4a-6z4 + a-6z6 - 4a-5z + 8a-5z3 - 9a-5z5 + 2a-5z7 + 4a-4 - 8a-4z2 + 11a-4z4 - 10a-4z6 + 2a-4z8 - 14a-3z + 26a-3z3 - 10a-3z5 - 3a-3z7 + a-3z9 + a-2z-2 + 12a-2 - 40a-2z2 + 59a-2z4 - 33a-2z6 + 5a-2z8 - 2a-1z-1 - 18a-1z + 32a-1z3 - 4a-1z5 - 9a-1z7 + 2a-1z9 + 2z-2 + 13 - 44z2 + 61z4 - 33z6 + 5z8 - 2az-1 - 10az + 20az3 - 8az5 - 3az7 + az9 + a2z-2 + 4a2 - 14a2z2 + 17a2z4 - 11a2z6 + 2a2z8 - 2a3z + 6a3z3 - 5a3z5 + a3z7

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13           1
j = 11          1 
j = 9        121 
j = 7       121  
j = 5      232   
j = 3     332    
j = 1    262     
j = -1   235      
j = -3  12        
j = -5 121        
j = -7 1          
j = -91           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 396]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 396]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[4, 15, 1, 16], X[9, 22, 10, 19], 
 
>   X[8, 4, 9, 3], X[21, 17, 22, 16], X[11, 5, 12, 18], X[5, 21, 6, 20], 
 
>   X[17, 11, 18, 10], X[19, 12, 20, 13], X[2, 14, 3, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -11, 5, -3}, {-10, 8, -6, 4}, 
 
>   {-8, -1, 2, -5, -4, 9, -7, 10, 11, -2, 3, 6, -9, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
     -4   2    2    3        2      3      4      5    6
1 - q   + -- - -- + - + q + q  - 2 q  + 2 q  - 2 q  + q
           3    2   q
          q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -12    -8   2    4    7       2      4    6    8    10    12    14    18
9 - q    - q   + -- + -- + -- + 5 q  + 4 q  - q  - q  - q   - q   + q   + q
                  6    4    2
                 q    q    q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 396]][a, z]
Out[8]=   
                                   2              2       2
    2    6       2   2      1     a        2   3 z    11 z       2  2      4
6 + -- - -- - 2 a  - -- + ----- + -- + 11 z  + ---- - ----- - 3 a  z  + 6 z  + 
     4    2           2    2  2    2             4      2
    a    a           z    a  z    z             a      a
 
     4      4                 6
    z    6 z     2  4    6   z
>   -- - ---- - a  z  + z  - --
     4     2                  2
    a     a                  a
In[9]:=
Kauffman[Link[11, NonAlternating, 396]][a, z]
Out[9]=   
                                    2
     4    12      2   2      1     a     2    2 a   4 z   14 z   18 z
13 + -- + -- + 4 a  + -- + ----- + -- - --- - --- - --- - ---- - ---- - 
      4    2           2    2  2    2   a z    z     5      3     a
     a    a           z    a  z    z                a      a
 
                                 2      2       2                 3       3
                3         2   2 z    8 z    40 z        2  2   8 z    26 z
>   10 a z - 2 a  z - 44 z  + ---- - ---- - ----- - 14 a  z  + ---- + ----- + 
                                6      4      2                  5      3
                               a      a      a                  a      a
 
        3                                  4       4       4
    32 z          3      3  3       4   4 z    11 z    59 z        2  4
>   ----- + 20 a z  + 6 a  z  + 61 z  - ---- + ----- + ----- + 17 a  z  - 
      a                                   6      4       2
                                         a      a       a
 
       5       5      5                               6       6       6
    9 z    10 z    4 z         5      3  5       6   z    10 z    33 z
>   ---- - ----- - ---- - 8 a z  - 5 a  z  - 33 z  + -- - ----- - ----- - 
      5      3      a                                 6     4       2
     a      a                                        a     a       a
 
                  7      7      7                              8      8
        2  6   2 z    3 z    9 z         7    3  7      8   2 z    5 z
>   11 a  z  + ---- - ---- - ---- - 3 a z  + a  z  + 5 z  + ---- + ---- + 
                 5      3     a                               4      2
                a      a                                     a      a
 
               9      9
       2  8   z    2 z       9
>   2 a  z  + -- + ---- + a z
               3    a
              a
In[10]:=
Kh[L][q, t]
Out[10]=   
5            3     1       1       1       2       1       1       2      2
- + 6 q + 3 q  + ----- + ----- + ----- + ----- + ----- + ----- + ----- + ---- + 
q                 9  5    7  4    5  4    5  3    3  3    5  2    3  2      2
                 q  t    q  t    q  t    q  t    q  t    q  t    q  t    q t
 
     3    2 q              3        5        3  2      5  2    7  2      5  3
>   --- + --- + 2 q t + 3 q  t + 2 q  t + 2 q  t  + 3 q  t  + q  t  + 2 q  t  + 
    q t    t
 
       7  3    9  3    7  4      9  4    9  5    11  5    13  6
>   2 q  t  + q  t  + q  t  + 2 q  t  + q  t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n396
L11n395
L11n395
L11n397
L11n397