PD Presentation: |
X6172 X14,7,15,8 X4,15,1,16 X5,10,6,11 X8493 X22,18,19,17 X11,20,12,21 X19,12,20,13 X18,22,5,21 X9,16,10,17 X2,14,3,13 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 3 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 381]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 381]] |
Out[4]= | PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[4, 15, 1, 16], X[5, 10, 6, 11],
> X[8, 4, 9, 3], X[22, 18, 19, 17], X[11, 20, 12, 21], X[19, 12, 20, 13],
> X[18, 22, 5, 21], X[9, 16, 10, 17], X[2, 14, 3, 13]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -11, 5, -3}, {-8, 7, 9, -6},
> {-4, -1, 2, -5, -10, 4, -7, 8, 11, -2, 3, 10, 6, -9}] |
In[6]:= | Jones[L][q] |
Out[6]= | -7 -6 -5 -3 -2 2
-q + q - q + q + q + - + q
q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -22 -20 2 2 2 -12 3 5 8 7 6 2 4
4 - q - q - --- - --- - --- - q + --- + -- + -- + -- + -- + 2 q + q
18 16 14 10 8 6 4 2
q q q q q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 381]][a, z] |
Out[8]= | 2 4 6
2 4 6 2 5 a 4 a a 2 2 2 4 2
3 - 8 a + 7 a - 2 a + -- - ---- + ---- - -- + z - 5 a z + 5 a z -
2 2 2 2
z z z z
6 2 2 4 4 4
> a z - a z + a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 381]][a, z] |
Out[9]= | 2 4 6 3 5 7
2 4 6 2 5 a 4 a a 5 a 9 a 5 a a
5 + 11 a + 10 a + 3 a - -- - ---- - ---- - -- + --- + ---- + ---- + -- -
2 2 2 2 z z z z
z z z z
3 5 7 2 2 2 4 2 6 2
> 8 a z - 21 a z - 19 a z - 6 a z - 4 z - 15 a z - 15 a z - 4 a z +
3 3 3 5 3 7 3 4 2 4 4 4
> 2 a z + 20 a z + 28 a z + 10 a z + z + 7 a z + 15 a z +
6 4 3 5 5 5 7 5 2 6 4 6 6 6
> 9 a z - 8 a z - 14 a z - 6 a z - a z - 7 a z - 6 a z +
3 7 5 7 7 7 4 8 6 8
> a z + 2 a z + a z + a z + a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 3 4 1 1 1 1 1 2 1 1
-- + - + q + ------ + ------ + ------ + ----- + ----- + ----- + ----- + ----- +
3 q 15 7 11 6 11 5 9 4 7 4 9 3 7 3 5 3
q q t q t q t q t q t q t q t q t
1 3 1 1 1 t 3 2
> ----- + ----- + ----- + ---- + --- + - + q t
7 2 5 2 3 2 3 q t q
q t q t q t q t |