PD Presentation: |
X6172 X2,9,3,10 X12,3,13,4 X10,5,11,6 X16,11,5,12 X4,15,1,16 X13,20,14,21 X7,19,8,18 X17,9,18,8 X19,22,20,17 X21,14,22,15 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 3 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 374]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 374]] |
Out[4]= | PD[X[6, 1, 7, 2], X[2, 9, 3, 10], X[12, 3, 13, 4], X[10, 5, 11, 6],
> X[16, 11, 5, 12], X[4, 15, 1, 16], X[13, 20, 14, 21], X[7, 19, 8, 18],
> X[17, 9, 18, 8], X[19, 22, 20, 17], X[21, 14, 22, 15]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -2, 3, -6}, {-9, 8, -10, 7, -11, 10},
> {4, -1, -8, 9, 2, -4, 5, -3, -7, 11, 6, -5}] |
In[6]:= | Jones[L][q] |
Out[6]= | -9 3 5 8 8 8 6 6 2
1 - q + -- - -- + -- - -- + -- - -- + -- - -
8 7 6 5 4 3 2 q
q q q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -32 -26 2 -22 2 2 4 2 6 3 4 2
1 - q + q + --- - q + --- + --- + --- + --- + --- + -- + -- + --
24 20 16 14 12 10 8 6 4
q q q q q q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 374]][a, z] |
Out[8]= | 2 4 6
2 4 6 8 10 a 2 a a 2 2 4 2
3 a - 3 a - 2 a + 3 a - a + -- - ---- + -- + 3 a z - 2 a z -
2 2 2
z z z
6 2 8 2 2 4 4 4 6 4 8 4 4 6 6 6
> 5 a z + 4 a z + a z - 3 a z - 4 a z + a z - a z - a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 374]][a, z] |
Out[9]= | 2 4 6 3 5
2 4 6 8 10 a 2 a a 2 a 2 a 3
-4 a - 6 a - a + 3 a + a + -- + ---- + -- - ---- - ---- + 4 a z +
2 2 2 z z
z z z
5 7 9 11 2 2 4 2 6 2
> 2 a z - 6 a z - 6 a z - 2 a z + 6 a z + 9 a z - 5 a z -
8 2 10 2 5 3 7 3 9 3 11 3 2 4
> 12 a z - 4 a z + 7 a z + 20 a z + 14 a z + a z - 4 a z -
4 4 6 4 8 4 10 4 3 5 5 5 7 5
> 9 a z + 14 a z + 22 a z + 3 a z - 5 a z - 12 a z - 14 a z -
9 5 2 6 4 6 6 6 8 6 3 7 5 7
> 7 a z + a z - 2 a z - 15 a z - 12 a z + 2 a z + 2 a z +
7 7 9 7 4 8 6 8 8 8 5 9 7 9
> 2 a z + 2 a z + 2 a z + 5 a z + 3 a z + a z + a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 3 5 1 2 1 3 2 5 5
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
5 3 19 7 17 6 15 6 15 5 13 5 13 4 11 4
q q q t q t q t q t q t q t q t
1 5 4 3 5 3 3 t t 2
> ----- + ------ + ----- + ----- + ----- + ---- + ---- + -- + - + q t
9 4 11 3 9 3 9 2 7 2 7 5 3 q
q t q t q t q t q t q t q t q |