PD Presentation: |
X6172 X10,3,11,4 X11,19,12,18 X7,16,8,17 X15,8,16,9 X17,15,18,22 X13,21,14,20 X19,13,20,12 X21,5,22,14 X2536 X4,9,1,10 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 3 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 357]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 357]] |
Out[4]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[11, 19, 12, 18], X[7, 16, 8, 17],
> X[15, 8, 16, 9], X[17, 15, 18, 22], X[13, 21, 14, 20], X[19, 13, 20, 12],
> X[21, 5, 22, 14], X[2, 5, 3, 6], X[4, 9, 1, 10]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -10, 2, -11}, {-5, 4, -6, 3, -8, 7, -9, 6},
> {10, -1, -4, 5, 11, -2, -3, 8, -7, 9}] |
In[6]:= | Jones[L][q] |
Out[6]= | -5 -4 3 3 4 2 3 4
-3 + q - q + -- - -- + - + 4 q - 2 q + 2 q - q
3 2 q
q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -16 2 2 3 2 3 3 3 2 4 6 12
4 + q + --- + --- + --- + -- + -- + -- + -- + 2 q + 2 q + q - q
14 12 10 8 6 4 2
q q q q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 357]][a, z] |
Out[8]= | 2 4 2
-2 2 4 -2 2 a a 2 3 z 2 2 4 2
6 - a - 8 a + 3 a + z - ---- + -- + 8 z - ---- - 8 a z + a z +
2 2 2
z z a
4
4 z 2 4 6
> 5 z - -- - 2 a z + z
2
a |
In[9]:= | Kauffman[Link[11, NonAlternating, 357]][a, z] |
Out[9]= | 2 4 3
-4 -2 2 4 -2 2 a a 2 a 2 a z z 3 z
8 - a - a + 14 a + 7 a - z - ---- - -- + --- + ---- + -- + -- - --- -
2 2 z z 5 3 a
z z a a
2 2 3
3 2 2 z 3 z 2 2 4 2 2 z
> 10 a z - 7 a z - 20 z + ---- + ---- - 38 a z - 17 a z - ---- +
4 2 3
a a a
3 4 5
11 z 3 3 3 4 6 z 2 4 4 4 z
> ----- + 18 a z + 5 a z + 24 z - ---- + 47 a z + 17 a z + -- -
a 2 3
a a
5 6 7
12 z 5 3 5 6 2 z 2 6 4 6 3 z
> ----- - 8 a z + 5 a z - 15 z + ---- - 24 a z - 7 a z + ---- -
a 2 a
a
7 3 7 8 2 8 4 8 9 3 9
> 2 a z - 5 a z + 3 z + 4 a z + a z + a z + a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 1 3 1 1 3 1 1 2 3
- + 3 q + 2 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 6 7 5 7 4 5 4 5 3 3 3 3 2
q t q t q t q t q t q t q t
2 2 2 q 3 5 3 2 5 2 7 2 9 3
> ---- + --- + --- + q t + 2 q t + q t + 2 q t + q t + q t
2 q t t
q t |