PD Presentation: |
X6172 X10,3,11,4 X18,12,19,11 X7,16,8,17 X15,8,16,9 X20,13,21,14 X22,20,15,19 X12,21,13,22 X14,18,5,17 X2536 X4,9,1,10 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 3 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 355]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 355]] |
Out[4]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[18, 12, 19, 11], X[7, 16, 8, 17],
> X[15, 8, 16, 9], X[20, 13, 21, 14], X[22, 20, 15, 19], X[12, 21, 13, 22],
> X[14, 18, 5, 17], X[2, 5, 3, 6], X[4, 9, 1, 10]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -10, 2, -11}, {-5, 4, 9, -3, 7, -6, 8, -7},
> {10, -1, -4, 5, 11, -2, 3, -8, 6, -9}] |
In[6]:= | Jones[L][q] |
Out[6]= | 2 4 9 10 13 12 10 2
-7 + -- - -- + -- - -- + -- - -- + -- + 4 q - q
7 6 5 4 3 2 q
q q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -24 4 3 3 7 2 4 2 -8 2 3 3 2
q + --- + --- + --- + --- + --- + --- + --- - q + -- - -- + -- - q +
22 20 18 16 14 12 10 6 4 2
q q q q q q q q q q
4 6
> 2 q - q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 355]][a, z] |
Out[8]= | 4 6 8
2 4 6 a 2 a a 2 2 2 4 2 6 2 4
a + a - 2 a + -- - ---- + -- - z + 4 a z - 2 a z + a z - z +
2 2 2
z z z
2 4 4 4 2 6
> 3 a z - 2 a z + a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 355]][a, z] |
Out[9]= | 4 6 8 5 7
2 4 6 8 a 2 a a 2 a 2 a 5 7
-a + 2 a + 6 a + 4 a - -- - ---- - -- + ---- + ---- - 5 a z - 5 a z +
2 2 2 z z
z z z
3
2 2 2 4 2 6 2 8 2 z 3 3 3
> 2 z + 5 a z - a z - 10 a z - 6 a z - -- + 4 a z + 11 a z +
a
5
5 3 7 3 4 2 4 4 4 6 4 8 4 z
> 7 a z + a z - 7 z - 9 a z + 2 a z + 7 a z + 3 a z + -- -
a
5 3 5 5 5 7 5 6 2 6 4 6 6 6
> 11 a z - 20 a z - 7 a z + a z + 4 z - a z - 7 a z - 2 a z +
7 3 7 5 7 7 7 2 8 4 8 6 8 3 9
> 6 a z + 9 a z + 4 a z + a z + 4 a z + 6 a z + 2 a z + a z +
5 9
> a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 5 6 2 1 3 1 6 4 5 5
-- + - + ------ + ------ + ------ + ------ + ------ + ----- + ----- + ----- +
3 q 15 6 13 6 13 5 11 5 11 4 9 4 9 3 7 3
q q t q t q t q t q t q t q t q t
8 6 5 7 3 t 2 3 2 5 3
> ----- + ----- + ---- + ---- + --- + 4 q t + q t + 3 q t + q t
7 2 5 2 5 3 q
q t q t q t q t |