© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n309
L11n309
L11n311
L11n311
L11n310
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n310

Visit L11n310's page at Knotilus!

Acknowledgement

L11n310 as Morse Link
DrawMorseLink

PD Presentation: X6172 X3,13,4,12 X13,19,14,18 X17,11,18,22 X7,17,8,16 X21,8,22,9 X9,20,10,21 X15,5,16,10 X19,15,20,14 X2536 X11,1,12,4

Gauss Code: {{1, -10, -2, 11}, {10, -1, -5, 6, -7, 8}, {-11, 2, -3, 9, -8, 5, -4, 3, -9, 7, -6, 4}}

Jones Polynomial: 3q-1 - 5 + 10q - 11q2 + 14q3 - 12q4 + 10q5 - 7q6 + 3q7 - q8

A2 (sl(3)) Invariant: 3q-4 + 2q-2 + 3 + 8q2 + 3q4 + 7q6 + 4q8 + 2q10 + 3q12 - 3q14 + q16 - 3q18 - 3q20 + q22 - q24

HOMFLY-PT Polynomial: - a-6z-2 - 3a-6 - 2a-6z2 - a-6z4 + 4a-4z-2 + 11a-4 + 10a-4z2 + 4a-4z4 + a-4z6 - 5a-2z-2 - 13a-2 - 12a-2z2 - 4a-2z4 + 2z-2 + 5 + 3z2

Kauffman Polynomial: a-9z - 2a-9z3 + a-9z5 + a-8z2 - 5a-8z4 + 3a-8z6 + a-7z-1 - 4a-7z + 5a-7z3 - 9a-7z5 + 5a-7z7 - a-6z-2 + 5a-6 - 8a-6z2 + 8a-6z4 - 9a-6z6 + 5a-6z8 + 5a-5z-1 - 21a-5z + 32a-5z3 - 22a-5z5 + 5a-5z7 + 2a-5z9 - 4a-4z-2 + 18a-4 - 36a-4z2 + 44a-4z4 - 29a-4z6 + 10a-4z8 + 9a-3z-1 - 29a-3z + 35a-3z3 - 18a-3z5 + 3a-3z7 + 2a-3z9 - 5a-2z-2 + 21a-2 - 41a-2z2 + 37a-2z4 - 17a-2z6 + 5a-2z8 + 5a-1z-1 - 13a-1z + 10a-1z3 - 6a-1z5 + 3a-1z7 - 2z-2 + 9 - 14z2 + 6z4

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17         1
j = 15        2 
j = 13       51 
j = 11      52  
j = 9     75   
j = 7    75    
j = 5   58     
j = 3  56      
j = 1 27       
j = -113        
j = -33         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 310]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 310]]
Out[4]=   
PD[X[6, 1, 7, 2], X[3, 13, 4, 12], X[13, 19, 14, 18], X[17, 11, 18, 22], 
 
>   X[7, 17, 8, 16], X[21, 8, 22, 9], X[9, 20, 10, 21], X[15, 5, 16, 10], 
 
>   X[19, 15, 20, 14], X[2, 5, 3, 6], X[11, 1, 12, 4]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, -2, 11}, {10, -1, -5, 6, -7, 8}, 
 
>   {-11, 2, -3, 9, -8, 5, -4, 3, -9, 7, -6, 4}]
In[6]:=
Jones[L][q]
Out[6]=   
     3              2       3       4       5      6      7    8
-5 + - + 10 q - 11 q  + 14 q  - 12 q  + 10 q  - 7 q  + 3 q  - q
     q
In[7]:=
A2Invariant[L][q]
Out[7]=   
    3    2       2      4      6      8      10      12      14    16      18
3 + -- + -- + 8 q  + 3 q  + 7 q  + 4 q  + 2 q   + 3 q   - 3 q   + q   - 3 q   - 
     4    2
    q    q
 
       20    22    24
>   3 q   + q   - q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 310]][a, z]
Out[8]=   
                                                          2       2       2
    3    11   13   2      1       4       5        2   2 z    10 z    12 z
5 - -- + -- - -- + -- - ----- + ----- - ----- + 3 z  - ---- + ----- - ----- - 
     6    4    2    2    6  2    4  2    2  2            6      4       2
    a    a    a    z    a  z    a  z    a  z            a      a       a
 
     4      4      4    6
    z    4 z    4 z    z
>   -- + ---- - ---- + --
     6     4      2     4
    a     a      a     a
In[9]:=
Kauffman[Link[11, NonAlternating, 310]][a, z]
Out[9]=   
    5    18   21   2      1       4       5      1      5      9      5    z
9 + -- + -- + -- - -- - ----- - ----- - ----- + ---- + ---- + ---- + --- + -- - 
     6    4    2    2    6  2    4  2    2  2    7      5      3     a z    9
    a    a    a    z    a  z    a  z    a  z    a  z   a  z   a  z         a
 
                                        2      2       2       2      3
    4 z   21 z   29 z   13 z       2   z    8 z    36 z    41 z    2 z
>   --- - ---- - ---- - ---- - 14 z  + -- - ---- - ----- - ----- - ---- + 
     7      5      3     a              8     6      4       2       9
    a      a      a                    a     a      a       a       a
 
       3       3       3       3             4      4       4       4    5
    5 z    32 z    35 z    10 z       4   5 z    8 z    44 z    37 z    z
>   ---- + ----- + ----- + ----- + 6 z  - ---- + ---- + ----- + ----- + -- - 
      7      5       3       a              8      6      4       2      9
     a      a       a                      a      a      a       a      a
 
       5       5       5      5      6      6       6       6      7      7
    9 z    22 z    18 z    6 z    3 z    9 z    29 z    17 z    5 z    5 z
>   ---- - ----- - ----- - ---- + ---- - ---- - ----- - ----- + ---- + ---- + 
      7      5       3      a       8      6      4       2       7      5
     a      a       a              a      a      a       a       a      a
 
       7      7      8       8      8      9      9
    3 z    3 z    5 z    10 z    5 z    2 z    2 z
>   ---- + ---- + ---- + ----- + ---- + ---- + ----
      3     a       6      4       2      5      3
     a             a      a       a      a      a
In[10]:=
Kh[L][q, t]
Out[10]=   
         3     3      1      3    2 q      3        5        5  2      7  2
7 q + 5 q  + ----- + ---- + --- + --- + 6 q  t + 5 q  t + 8 q  t  + 7 q  t  + 
              3  2      2   q t    t
             q  t    q t
 
       7  3      9  3      9  4      11  4      11  5      13  5    13  6
>   5 q  t  + 7 q  t  + 5 q  t  + 5 q   t  + 2 q   t  + 5 q   t  + q   t  + 
 
       15  6    17  7
>   2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n310
L11n309
L11n309
L11n311
L11n311