© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n306
L11n306
L11n308
L11n308
L11n307
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n307

Visit L11n307's page at Knotilus!

Acknowledgement

L11n307 as Morse Link
DrawMorseLink

PD Presentation: X6172 X3,13,4,12 X7,17,8,16 X9,21,10,20 X15,9,16,8 X19,5,20,10 X13,19,14,18 X17,11,18,22 X21,15,22,14 X2536 X11,1,12,4

Gauss Code: {{1, -10, -2, 11}, {10, -1, -3, 5, -4, 6}, {-11, 2, -7, 9, -5, 3, -8, 7, -6, 4, -9, 8}}

Jones Polynomial: 2q - 4q2 + 8q3 - 8q4 + 11q5 - 9q6 + 8q7 - 6q8 + 3q9 - q10

A2 (sl(3)) Invariant: 2q2 - q4 + 4q8 + 2q10 + 6q12 + 6q14 + 5q16 + 6q18 + q20 + 3q22 - q24 - 3q26 - 2q30 - q32

HOMFLY-PT Polynomial: - a-10z-2 - a-10 + 4a-8z-2 + 7a-8 + 4a-8z2 - 5a-6z-2 - 12a-6 - 9a-6z2 - 3a-6z4 + 2a-4z-2 + 5a-4 + 2a-4z2 - a-4z4 + a-2 + 2a-2z2

Kauffman Polynomial: a-11z-1 - 4a-11z + 6a-11z3 - 4a-11z5 + a-11z7 - a-10z-2 + 3a-10 - 6a-10z2 + 14a-10z4 - 12a-10z6 + 3a-10z8 + 5a-9z-1 - 19a-9z + 36a-9z3 - 21a-9z5 - a-9z7 + 2a-9z9 - 4a-8z-2 + 15a-8 - 32a-8z2 + 48a-8z4 - 39a-8z6 + 10a-8z8 + 9a-7z-1 - 33a-7z + 52a-7z3 - 38a-7z5 + 5a-7z7 + 2a-7z9 - 5a-6z-2 + 20a-6 - 37a-6z2 + 35a-6z4 - 24a-6z6 + 7a-6z8 + 5a-5z-1 - 18a-5z + 25a-5z3 - 20a-5z5 + 7a-5z7 - 2a-4z-2 + 8a-4 - 8a-4z2 + a-4z4 + 3a-4z6 + 3a-3z3 + a-3z5 - a-2 + 3a-2z2

Khovanov Homology:
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 21         1
j = 19        2 
j = 17       41 
j = 15      42  
j = 13     65   
j = 11    53    
j = 9   36     
j = 7  55      
j = 5  4       
j = 324        
j = 12         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 307]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 307]]
Out[4]=   
PD[X[6, 1, 7, 2], X[3, 13, 4, 12], X[7, 17, 8, 16], X[9, 21, 10, 20], 
 
>   X[15, 9, 16, 8], X[19, 5, 20, 10], X[13, 19, 14, 18], X[17, 11, 18, 22], 
 
>   X[21, 15, 22, 14], X[2, 5, 3, 6], X[11, 1, 12, 4]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, -2, 11}, {10, -1, -3, 5, -4, 6}, 
 
>   {-11, 2, -7, 9, -5, 3, -8, 7, -6, 4, -9, 8}]
In[6]:=
Jones[L][q]
Out[6]=   
         2      3      4       5      6      7      8      9    10
2 q - 4 q  + 8 q  - 8 q  + 11 q  - 9 q  + 8 q  - 6 q  + 3 q  - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
   2    4      8      10      12      14      16      18    20      22    24
2 q  - q  + 4 q  + 2 q   + 6 q   + 6 q   + 5 q   + 6 q   + q   + 3 q   - q   - 
 
       26      30    32
>   3 q   - 2 q   - q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 307]][a, z]
Out[8]=   
                                                                 2      2
  -10   7    12   5     -2     1        4       5       2     4 z    9 z
-a    + -- - -- + -- + a   - ------ + ----- - ----- + ----- + ---- - ---- + 
         8    6    4          10  2    8  2    6  2    4  2     8      6
        a    a    a          a   z    a  z    a  z    a  z     a      a
 
       2      2      4    4
    2 z    2 z    3 z    z
>   ---- + ---- - ---- - --
      4      2      6     4
     a      a      a     a
In[9]:=
Kauffman[Link[11, NonAlternating, 307]][a, z]
Out[9]=   
 3    15   20   8     -2     1        4       5       2       1      5
--- + -- + -- + -- - a   - ------ - ----- - ----- - ----- + ----- + ---- + 
 10    8    6    4          10  2    8  2    6  2    4  2    11      9
a     a    a    a          a   z    a  z    a  z    a  z    a   z   a  z
 
                                                2       2       2      2
     9      5     4 z   19 z   33 z   18 z   6 z    32 z    37 z    8 z
>   ---- + ---- - --- - ---- - ---- - ---- - ---- - ----- - ----- - ---- + 
     7      5      11     9      7      5     10      8       6       4
    a  z   a  z   a      a      a      a     a       a       a       a
 
       2      3       3       3       3      3       4       4       4    4
    3 z    6 z    36 z    52 z    25 z    3 z    14 z    48 z    35 z    z
>   ---- + ---- + ----- + ----- + ----- + ---- + ----- + ----- + ----- + -- - 
      2     11      9       7       5       3      10      8       6      4
     a     a       a       a       a       a      a       a       a      a
 
       5       5       5       5    5       6       6       6      6    7
    4 z    21 z    38 z    20 z    z    12 z    39 z    24 z    3 z    z
>   ---- - ----- - ----- - ----- + -- - ----- - ----- - ----- + ---- + --- - 
     11      9       7       5      3     10      8       6       4     11
    a       a       a       a      a     a       a       a       a     a
 
     7      7      7      8       8      8      9      9
    z    5 z    7 z    3 z    10 z    7 z    2 z    2 z
>   -- + ---- + ---- + ---- + ----- + ---- + ---- + ----
     9     7      5     10      8       6      9      7
    a     a      a     a       a       a      a      a
In[10]:=
Kh[L][q, t]
Out[10]=   
         3      3        5  2      7  2      7  3      9  3      9  4
2 q + 2 q  + 4 q  t + 4 q  t  + 5 q  t  + 5 q  t  + 3 q  t  + 6 q  t  + 
 
       11  4      11  5      13  5      13  6      15  6      15  7
>   5 q   t  + 3 q   t  + 6 q   t  + 5 q   t  + 4 q   t  + 2 q   t  + 
 
       17  7    17  8      19  8    21  9
>   4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n307
L11n306
L11n306
L11n308
L11n308