© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n302
L11n302
L11n304
L11n304
L11n303
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n303

Visit L11n303's page at Knotilus!

Acknowledgement

L11n303 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,3,13,4 X13,21,14,20 X19,11,20,22 X15,5,16,10 X17,9,18,8 X7,17,8,16 X9,19,10,18 X21,15,22,14 X2536 X4,11,1,12

Gauss Code: {{1, -10, 2, -11}, {10, -1, -7, 6, -8, 5}, {11, -2, -3, 9, -5, 7, -6, 8, -4, 3, -9, 4}}

Jones Polynomial: q-2 + 1 + 2q - 2q2 + 4q3 - 4q4 + 4q5 - 3q6 + 2q7 - q8

A2 (sl(3)) Invariant: q-6 + 2q-4 + 4q-2 + 4 + 6q2 + 4q4 + 4q6 + 4q8 + q10 + 2q12 - q14 - q18 - 2q20 - q24

HOMFLY-PT Polynomial: - a-6z-2 - 3a-6 - 3a-6z2 - a-6z4 + 4a-4z-2 + 13a-4 + 14a-4z2 + 6a-4z4 + a-4z6 - 5a-2z-2 - 17a-2 - 19a-2z2 - 8a-2z4 - a-2z6 + 2z-2 + 7 + 5z2 + z4

Kauffman Polynomial: a-9z - 3a-9z3 + a-9z5 - a-8 + 3a-8z2 - 6a-8z4 + 2a-8z6 + a-7z-1 - 2a-7z + 4a-7z3 - 6a-7z5 + 2a-7z7 - a-6z-2 + 3a-6z2 - a-6z4 - 2a-6z6 + a-6z8 + 5a-5z-1 - 19a-5z + 26a-5z3 - 14a-5z5 + 3a-5z7 - 4a-4z-2 + 13a-4 - 16a-4z2 + 15a-4z4 - 6a-4z6 + a-4z8 + 9a-3z-1 - 35a-3z + 41a-3z3 - 16a-3z5 + 2a-3z7 - 5a-2z-2 + 22a-2 - 39a-2z2 + 31a-2z4 - 10a-2z6 + a-2z8 + 5a-1z-1 - 19a-1z + 22a-1z3 - 9a-1z5 + a-1z7 - 2z-2 + 11 - 23z2 + 21z4 - 8z6 + z8

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          1 
j = 13         21 
j = 11        21  
j = 9       22   
j = 7     132    
j = 5     24     
j = 3   121      
j = 1    3       
j = -1  1         
j = -31           
j = -51           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 303]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 303]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[13, 21, 14, 20], X[19, 11, 20, 22], 
 
>   X[15, 5, 16, 10], X[17, 9, 18, 8], X[7, 17, 8, 16], X[9, 19, 10, 18], 
 
>   X[21, 15, 22, 14], X[2, 5, 3, 6], X[4, 11, 1, 12]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, -7, 6, -8, 5}, 
 
>   {11, -2, -3, 9, -5, 7, -6, 8, -4, 3, -9, 4}]
In[6]:=
Jones[L][q]
Out[6]=   
     -2            2      3      4      5      6      7    8
1 + q   + 2 q - 2 q  + 4 q  - 4 q  + 4 q  - 3 q  + 2 q  - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -6   2    4       2      4      6      8    10      12    14    18
4 + q   + -- + -- + 6 q  + 4 q  + 4 q  + 4 q  + q   + 2 q   - q   - q   - 
           4    2
          q    q
 
       20    24
>   2 q   - q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 303]][a, z]
Out[8]=   
                                                          2       2       2
    3    13   17   2      1       4       5        2   3 z    14 z    19 z
7 - -- + -- - -- + -- - ----- + ----- - ----- + 5 z  - ---- + ----- - ----- + 
     6    4    2    2    6  2    4  2    2  2            6      4       2
    a    a    a    z    a  z    a  z    a  z            a      a       a
 
          4      4      4    6    6
     4   z    6 z    8 z    z    z
>   z  - -- + ---- - ---- + -- - --
          6     4      2     4    2
         a     a      a     a    a
In[9]:=
Kauffman[Link[11, NonAlternating, 303]][a, z]
Out[9]=   
      -8   13   22   2      1       4       5      1      5      9      5
11 - a   + -- + -- - -- - ----- - ----- - ----- + ---- + ---- + ---- + --- + 
            4    2    2    6  2    4  2    2  2    7      5      3     a z
           a    a    z    a  z    a  z    a  z    a  z   a  z   a  z
 
                                               2      2       2       2
    z    2 z   19 z   35 z   19 z       2   3 z    3 z    16 z    39 z
>   -- - --- - ---- - ---- - ---- - 23 z  + ---- + ---- - ----- - ----- - 
     9    7      5      3     a               8      6      4       2
    a    a      a      a                     a      a      a       a
 
       3      3       3       3       3              4    4       4       4
    3 z    4 z    26 z    41 z    22 z        4   6 z    z    15 z    31 z
>   ---- + ---- + ----- + ----- + ----- + 21 z  - ---- - -- + ----- + ----- + 
      9      7      5       3       a               8     6     4       2
     a      a      a       a                       a     a     a       a
 
     5      5       5       5      5             6      6      6       6
    z    6 z    14 z    16 z    9 z       6   2 z    2 z    6 z    10 z
>   -- - ---- - ----- - ----- - ---- - 8 z  + ---- - ---- - ---- - ----- + 
     9     7      5       3      a              8      6      4      2
    a     a      a       a                     a      a      a      a
 
       7      7      7    7         8    8    8
    2 z    3 z    2 z    z     8   z    z    z
>   ---- + ---- + ---- + -- + z  + -- + -- + --
      7      5      3    a          6    4    2
     a      a      a               a    a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
                                     3
         3     1       1      1     q     3        5      7        5  2
3 q + 2 q  + ----- + ----- + ---- + -- + q  t + 2 q  t + q  t + 4 q  t  + 
              5  4    3  4      2   t
             q  t    q  t    q t
 
       7  2      7  3      9  3      9  4      11  4    11  5      13  5
>   3 q  t  + 2 q  t  + 2 q  t  + 2 q  t  + 2 q   t  + q   t  + 2 q   t  + 
 
     13  6    15  6    17  7
>   q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n303
L11n302
L11n302
L11n304
L11n304