PD Presentation: |
X6172 X14,7,15,8 X4,15,1,16 X5,10,6,11 X8493 X11,20,12,21 X17,5,18,22 X21,19,22,18 X19,12,20,13 X9,16,10,17 X2,14,3,13 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 3]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 3]] |
Out[4]= | PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[4, 15, 1, 16], X[5, 10, 6, 11],
> X[8, 4, 9, 3], X[11, 20, 12, 21], X[17, 5, 18, 22], X[21, 19, 22, 18],
> X[19, 12, 20, 13], X[9, 16, 10, 17], X[2, 14, 3, 13]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -11, 5, -3}, {-4, -1, 2, -5, -10, 4, -6, 9, 11, -2, 3, 10, -7, 8,
> -9, 6, -8, 7}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(15/2) 2 4 6 6 7 6 5
q - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 2 Sqrt[q] -
13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q
3/2
> q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -24 -22 2 -16 2 -12 3 -6 4 6
3 - q - q - --- + q + --- + q + --- + q + q + q
18 14 10
q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 3]][a, z] |
Out[8]= | 3 5 7
1 2 a 3 a 3 a a z 3 5 7 3
-(---) + --- - ---- + ---- - -- - - + 3 a z - 5 a z + 4 a z - a z + 2 a z -
a z z z z z a
3 3 5 3 3 5
> 3 a z + 2 a z - a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 3]][a, z] |
Out[9]= | 3 5 7
2 6 8 1 2 a 3 a 3 a a 2 z 3
-2 a + 2 a + a - --- - --- - ---- - ---- - -- + --- + 7 a z + 12 a z +
a z z z z z a
3
5 7 2 2 2 4 2 6 2 8 2 z
> 10 a z + 3 a z + 2 z + 8 a z + 6 a z - 4 a z - 4 a z - -- -
a
3 3 3 5 3 7 3 4 2 4 4 4
> 9 a z - 15 a z - 13 a z - 6 a z - 2 z - 15 a z - 16 a z +
6 4 8 4 5 3 5 5 5 7 5 2 6
> a z + 4 a z + 3 a z + 5 a z + 9 a z + 7 a z + 8 a z +
4 6 6 6 8 6 7 3 7 7 7 2 8 4 8
> 14 a z + 5 a z - a z - a z + a z - 2 a z - 2 a z - 4 a z -
6 8 3 9 5 9
> 2 a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 3 1 1 1 3 1 3 3 3
4 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- +
2 16 7 14 6 12 6 12 5 10 5 10 4 8 4 8 3
q q t q t q t q t q t q t q t q t
3 4 3 2 4 2 4 2
> ----- + ----- + ----- + ---- + ---- + t + q t + q t
6 3 6 2 4 2 4 2
q t q t q t q t q t |