© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n292
L11n292
L11n294
L11n294
L11n293
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n293

Visit L11n293's page at Knotilus!

Acknowledgement

L11n293 as Morse Link
DrawMorseLink

PD Presentation: X6172 X11,18,12,19 X8493 X2,16,3,15 X16,7,17,8 X9,11,10,22 X4,17,1,18 X19,5,20,10 X5,12,6,13 X21,15,22,14 X13,21,14,20

Gauss Code: {{1, -4, 3, -7}, {-9, -1, 5, -3, -6, 8}, {-2, 9, -11, 10, 4, -5, 7, 2, -8, 11, -10, 6}}

Jones Polynomial: - q-4 + 2q-3 - q-2 + q-1 + 3 - 2q + 4q2 - 4q3 + 4q4 - 3q5 + q6

A2 (sl(3)) Invariant: - q-12 + 3q-6 + 3q-4 + 6q-2 + 7 + 4q2 + 5q4 + q8 - q10 - q12 + q14 - q16 + q18

HOMFLY-PT Polynomial: a-4 + 2a-4z2 + a-4z4 + a-2z-2 - 3a-2 - 8a-2z2 - 5a-2z4 - a-2z6 - 2z-2 + 3 + 9z2 + 6z4 + z6 + a2z-2 - a2 - 3a2z2 - a2z4

Kauffman Polynomial: a-6z2 - 3a-6z4 + a-6z6 - 2a-5z + 7a-5z3 - 11a-5z5 + 3a-5z7 + 2a-4 - 6a-4z2 + 10a-4z4 - 12a-4z6 + 3a-4z8 - 7a-3z + 20a-3z3 - 13a-3z5 - a-3z7 + a-3z9 + a-2z-2 + 6a-2 - 30a-2z2 + 50a-2z4 - 30a-2z6 + 5a-2z8 - 2a-1z-1 - 9a-1z + 19a-1z3 + 3a-1z5 - 10a-1z7 + 2a-1z9 + 2z-2 + 7 - 36z2 + 56z4 - 29z6 + 4z8 - 2az-1 - 5az + 11az3 - 5az7 + az9 + a2z-2 + 2a2 - 13a2z2 + 19a2z4 - 12a2z6 + 2a2z8 - a3z + 5a3z3 - 5a3z5 + a3z7

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13           1
j = 11          2 
j = 9         21 
j = 7       132  
j = 5      132   
j = 3     233    
j = 1    263     
j = -1   125      
j = -3  121       
j = -5 111        
j = -7 1          
j = -91           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 293]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 293]]
Out[4]=   
PD[X[6, 1, 7, 2], X[11, 18, 12, 19], X[8, 4, 9, 3], X[2, 16, 3, 15], 
 
>   X[16, 7, 17, 8], X[9, 11, 10, 22], X[4, 17, 1, 18], X[19, 5, 20, 10], 
 
>   X[5, 12, 6, 13], X[21, 15, 22, 14], X[13, 21, 14, 20]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, 3, -7}, {-9, -1, 5, -3, -6, 8}, 
 
>   {-2, 9, -11, 10, 4, -5, 7, 2, -8, 11, -10, 6}]
In[6]:=
Jones[L][q]
Out[6]=   
     -4   2     -2   1            2      3      4      5    6
3 - q   + -- - q   + - - 2 q + 4 q  - 4 q  + 4 q  - 3 q  + q
           3         q
          q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -12   3    3    6       2      4    8    10    12    14    16    18
7 - q    + -- + -- + -- + 4 q  + 5 q  + q  - q   - q   + q   - q   + q
            6    4    2
           q    q    q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 293]][a, z]
Out[8]=   
                                  2             2      2
     -4   3     2   2      1     a       2   2 z    8 z       2  2      4
3 + a   - -- - a  - -- + ----- + -- + 9 z  + ---- - ---- - 3 a  z  + 6 z  + 
           2         2    2  2    2            4      2
          a         z    a  z    z            a      a
 
     4      4                 6
    z    5 z     2  4    6   z
>   -- - ---- - a  z  + z  - --
     4     2                  2
    a     a                  a
In[9]:=
Kauffman[Link[11, NonAlternating, 293]][a, z]
Out[9]=   
                                   2
    2    6       2   2      1     a     2    2 a   2 z   7 z   9 z
7 + -- + -- + 2 a  + -- + ----- + -- - --- - --- - --- - --- - --- - 5 a z - 
     4    2           2    2  2    2   a z    z     5     3     a
    a    a           z    a  z    z                a     a
 
                    2      2       2                 3       3       3
     3         2   z    6 z    30 z        2  2   7 z    20 z    19 z
>   a  z - 36 z  + -- - ---- - ----- - 13 a  z  + ---- + ----- + ----- + 
                    6     4      2                  5      3       a
                   a     a      a                  a      a
 
                                   4       4       4                  5
          3      3  3       4   3 z    10 z    50 z        2  4   11 z
>   11 a z  + 5 a  z  + 56 z  - ---- + ----- + ----- + 19 a  z  - ----- - 
                                  6      4       2                  5
                                 a      a       a                  a
 
        5      5                      6       6       6                 7
    13 z    3 z       3  5       6   z    12 z    30 z        2  6   3 z
>   ----- + ---- - 5 a  z  - 29 z  + -- - ----- - ----- - 12 a  z  + ---- - 
      3      a                        6     4       2                  5
     a                               a     a       a                  a
 
     7       7                              8      8              9      9
    z    10 z         7    3  7      8   3 z    5 z       2  8   z    2 z
>   -- - ----- - 5 a z  + a  z  + 4 z  + ---- + ---- + 2 a  z  + -- + ---- + 
     3     a                               4      2               3    a
    a                                     a      a               a
 
       9
>   a z
In[10]:=
Kh[L][q, t]
Out[10]=   
5            3     1       1       1       1       1       1       2      1
- + 6 q + 2 q  + ----- + ----- + ----- + ----- + ----- + ----- + ----- + ---- + 
q                 9  5    7  4    5  4    5  3    3  3    5  2    3  2      2
                 q  t    q  t    q  t    q  t    q  t    q  t    q  t    q t
 
     1      2    2 q              3      5        3  2      5  2    7  2
>   ---- + --- + --- + 3 q t + 3 q  t + q  t + 3 q  t  + 3 q  t  + q  t  + 
     3     q t    t
    q  t
 
       5  3      7  3      7  4      9  4    9  5      11  5    13  6
>   2 q  t  + 3 q  t  + 2 q  t  + 2 q  t  + q  t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n293
L11n292
L11n292
L11n294
L11n294