© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n287
L11n287
L11n289
L11n289
L11n288
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n288

Visit L11n288's page at Knotilus!

Acknowledgement

L11n288 as Morse Link
DrawMorseLink

PD Presentation: X6172 X5,12,6,13 X3849 X13,2,14,3 X14,7,15,8 X11,18,12,19 X9,21,10,20 X19,5,20,10 X4,15,1,16 X17,22,18,11 X21,16,22,17

Gauss Code: {{1, 4, -3, -9}, {-2, -1, 5, 3, -7, 8}, {-6, 2, -4, -5, 9, 11, -10, 6, -8, 7, -11, 10}}

Jones Polynomial: - q-10 + q-9 - 2q-8 + 3q-7 - 2q-6 + 4q-5 - 2q-4 + 3q-3 - q-2 + q-1

A2 (sl(3)) Invariant: - q-34 - 2q-30 - 2q-28 - 2q-26 - q-24 + 2q-22 + 3q-20 + 7q-18 + 6q-16 + 6q-14 + 4q-12 + 3q-10 + 2q-8 + q-6 + q-4

HOMFLY-PT Polynomial: 2a4z-2 + 7a4 + 11a4z2 + 6a4z4 + a4z6 - 5a6z-2 - 14a6 - 20a6z2 - 17a6z4 - 7a6z6 - a6z8 + 4a8z-2 + 9a8 + 11a8z2 + 6a8z4 + a8z6 - a10z-2 - 2a10 - a10z2

Kauffman Polynomial: - 2a4z-2 + 9a4 - 18a4z2 + 17a4z4 - 7a4z6 + a4z8 + 5a5z-1 - 13a5z + 9a5z3 + 4a5z5 - 5a5z7 + a5z9 - 5a6z-2 + 21a6 - 45a6z2 + 51a6z4 - 25a6z6 + 4a6z8 + 9a7z-1 - 29a7z + 34a7z3 - 12a7z5 - 2a7z7 + a7z9 - 4a8z-2 + 18a8 - 32a8z2 + 32a8z4 - 17a8z6 + 3a8z8 + 5a9z-1 - 21a9z + 27a9z3 - 16a9z5 + 3a9z7 - a10z-2 + 5a10 - 4a10z2 - 2a10z4 + a10z6 + a11z-1 - 4a11z + 2a11z3 + a12z2 + a13z

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = -1         1
j = -3          
j = -5       31 
j = -7     111  
j = -9     42   
j = -11   222    
j = -13   32     
j = -15 122      
j = -17 12       
j = -1911        
j = -211         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 288]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 288]]
Out[4]=   
PD[X[6, 1, 7, 2], X[5, 12, 6, 13], X[3, 8, 4, 9], X[13, 2, 14, 3], 
 
>   X[14, 7, 15, 8], X[11, 18, 12, 19], X[9, 21, 10, 20], X[19, 5, 20, 10], 
 
>   X[4, 15, 1, 16], X[17, 22, 18, 11], X[21, 16, 22, 17]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 4, -3, -9}, {-2, -1, 5, 3, -7, 8}, 
 
>   {-6, 2, -4, -5, 9, 11, -10, 6, -8, 7, -11, 10}]
In[6]:=
Jones[L][q]
Out[6]=   
  -10    -9   2    3    2    4    2    3     -2   1
-q    + q   - -- + -- - -- + -- - -- + -- - q   + -
               8    7    6    5    4    3         q
              q    q    q    q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -34    2     2     2     -24    2     3     7     6     6     4     3    2
-q    - --- - --- - --- - q    + --- + --- + --- + --- + --- + --- + --- + -- + 
         30    28    26           22    20    18    16    14    12    10    8
        q     q     q            q     q     q     q     q     q     q     q
 
     -6    -4
>   q   + q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 288]][a, z]
Out[8]=   
                                 4      6      8    10
   4       6      8      10   2 a    5 a    4 a    a         4  2       6  2
7 a  - 14 a  + 9 a  - 2 a   + ---- - ---- + ---- - --- + 11 a  z  - 20 a  z  + 
                                2      2      2     2
                               z      z      z     z
 
        8  2    10  2      4  4       6  4      8  4    4  6      6  6
>   11 a  z  - a   z  + 6 a  z  - 17 a  z  + 6 a  z  + a  z  - 7 a  z  + 
 
     8  6    6  8
>   a  z  - a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 288]][a, z]
Out[9]=   
                                  4      6      8    10      5      7      9
   4       6       8      10   2 a    5 a    4 a    a     5 a    9 a    5 a
9 a  + 21 a  + 18 a  + 5 a   - ---- - ---- - ---- - --- + ---- + ---- + ---- + 
                                 2      2      2     2     z      z      z
                                z      z      z     z
 
     11
    a         5         7         9        11      13         4  2       6  2
>   --- - 13 a  z - 29 a  z - 21 a  z - 4 a   z + a   z - 18 a  z  - 45 a  z  - 
     z
 
        8  2      10  2    12  2      5  3       7  3       9  3      11  3
>   32 a  z  - 4 a   z  + a   z  + 9 a  z  + 34 a  z  + 27 a  z  + 2 a   z  + 
 
        4  4       6  4       8  4      10  4      5  5       7  5       9  5
>   17 a  z  + 51 a  z  + 32 a  z  - 2 a   z  + 4 a  z  - 12 a  z  - 16 a  z  - 
 
       4  6       6  6       8  6    10  6      5  7      7  7      9  7
>   7 a  z  - 25 a  z  - 17 a  z  + a   z  - 5 a  z  - 2 a  z  + 3 a  z  + 
 
     4  8      6  8      8  8    5  9    7  9
>   a  z  + 4 a  z  + 3 a  z  + a  z  + a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -7   3      1        1        1        1        1        2        2
q   + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
       5    21  7    19  7    19  6    17  6    15  6    17  5    15  5
      q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      2        3        2        2        2        2        4       1
>   ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
     15  4    13  4    11  4    13  3    11  3    11  2    9  2    7  2
    q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
                        2
     2      1     t    t
>   ---- + ---- + -- + --
     9      7      5   q
    q  t   q  t   q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n288
L11n287
L11n287
L11n289
L11n289