PD Presentation: |
X6172 X5,12,6,13 X3849 X2,14,3,13 X14,7,15,8 X15,1,16,4 X21,18,22,19 X9,21,10,20 X19,5,20,10 X11,16,12,17 X17,22,18,11 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 3 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 286]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 286]] |
Out[4]= | PD[X[6, 1, 7, 2], X[5, 12, 6, 13], X[3, 8, 4, 9], X[2, 14, 3, 13],
> X[14, 7, 15, 8], X[15, 1, 16, 4], X[21, 18, 22, 19], X[9, 21, 10, 20],
> X[19, 5, 20, 10], X[11, 16, 12, 17], X[17, 22, 18, 11]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -4, -3, 6}, {-2, -1, 5, 3, -8, 9},
> {-10, 2, 4, -5, -6, 10, -11, 7, -9, 8, -7, 11}] |
In[6]:= | Jones[L][q] |
Out[6]= | -7 2 3 5 5 6 5 2
5 - q + -- - -- + -- - -- + -- - - - 2 q + 2 q
6 5 4 3 2 q
q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -22 -16 2 -12 -10 2 -6 3 3 2 4 6
4 - q - q + --- + q + q + -- + q + -- + -- + 5 q + 2 q + 3 q +
14 8 4 2
q q q q
8
> 2 q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 286]][a, z] |
Out[8]= | 2
2 2 4 6 2 1 a 2 2 2 4 2 6 2
-4 + -- + a + 2 a - a - -- + ----- + -- - 3 z + a z + 2 a z - a z +
2 2 2 2 2
a z a z z
2 4 4 4
> a z + a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 286]][a, z] |
Out[9]= | 2
4 2 4 6 2 1 a 2 2 a 4 z
-7 - -- - 2 a + 4 a + 2 a + -- + ----- + -- - --- - --- + --- + 6 a z -
2 2 2 2 2 a z z a
a z a z z
2 3
5 7 2 3 z 2 2 4 2 6 2 z 3
> 4 a z - 2 a z + 10 z + ---- - a z - 16 a z - 8 a z - -- - 2 a z +
2 a
a
5
3 3 5 3 7 3 4 2 4 4 4 6 4 z
> 2 a z + 10 a z + 7 a z - 5 z + 3 a z + 23 a z + 15 a z + -- -
a
5 3 5 5 5 7 5 6 2 6 4 6
> 3 a z - 4 a z - 5 a z - 5 a z + 2 z - 5 a z - 17 a z -
6 6 7 3 7 5 7 7 7 2 8 4 8 6 8
> 10 a z + 2 a z - a z - 2 a z + a z + 2 a z + 4 a z + 2 a z +
3 9 5 9
> a z + a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 3 1 1 1 2 1 3 2 2
- + 4 q + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- +
q 15 7 13 6 11 6 11 5 9 5 9 4 7 4 7 3
q t q t q t q t q t q t q t q t
3 4 3 2 3 3 3 2 5 2
> ----- + ----- + ----- + ---- + --- + q t + q t + q t + 2 q t
5 3 5 2 3 2 3 q t
q t q t q t q t |