PD Presentation: |
X6172 X16,7,17,8 X17,1,18,4 X5,12,6,13 X3849 X13,22,14,5 X21,14,22,15 X11,18,12,19 X9,20,10,21 X19,10,20,11 X2,16,3,15 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 27]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 27]] |
Out[4]= | PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[17, 1, 18, 4], X[5, 12, 6, 13],
> X[3, 8, 4, 9], X[13, 22, 14, 5], X[21, 14, 22, 15], X[11, 18, 12, 19],
> X[9, 20, 10, 21], X[19, 10, 20, 11], X[2, 16, 3, 15]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -11, -5, 3}, {-4, -1, 2, 5, -9, 10, -8, 4, -6, 7, 11, -2, -3, 8,
> -10, 9, -7, 6}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(19/2) -(17/2) 3 4 3 4 3 3 -(3/2)
q - q + ----- - ----- + ----- - ---- + ---- - ---- + q -
15/2 13/2 11/2 9/2 7/2 5/2
q q q q q q
1
> -------
Sqrt[q] |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -30 -28 -26 3 -22 -18 3 2 3 2 2 2
1 - q - q - q - --- - q + q + --- + --- + --- + --- + -- + --
24 16 14 12 10 8 6
q q q q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 27]][a, z] |
Out[8]= | 3 5 7 9
-2 a 2 a a a 3 5 7 9 5 3 7 3
----- + ---- + -- - -- - a z - 3 a z + 4 a z + a z - a z + 2 a z + a z
z z z z |
In[9]:= | Kauffman[Link[11, NonAlternating, 27]][a, z] |
Out[9]= | 3 5 7 9
4 6 8 10 2 a 2 a a a 3 5
2 a - 4 a - 9 a - 4 a - ---- - ---- + -- + -- - a z + 7 a z + 13 a z +
z z z z
7 2 2 4 2 6 2 8 2 10 2 3 3
> 5 a z - a z - 5 a z + 11 a z + 31 a z + 16 a z - 3 a z -
5 3 7 3 4 4 6 4 8 4 10 4
> 25 a z - 22 a z + 7 a z - 18 a z - 42 a z - 17 a z +
5 5 7 5 9 5 4 6 6 6 8 6 10 6
> 19 a z + 13 a z - 6 a z - 2 a z + 14 a z + 23 a z + 7 a z -
5 7 7 7 9 7 6 8 8 8 10 8 7 9 9 9
> 4 a z + a z + 5 a z - 3 a z - 4 a z - a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | -4 2 1 1 3 1 3 2 1
1 + q + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
2 20 9 16 8 16 7 14 6 12 6 12 5 10 5
q q t q t q t q t q t q t q t
3 2 1 1 3 3 1 2
> ------ + ----- + ------ + ----- + ----- + ----- + ----- + ----
10 4 8 4 10 3 8 3 6 3 6 2 4 2 2
q t q t q t q t q t q t q t q t |