© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n261
L11n261
L11n263
L11n263
L11n262
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n262

Visit L11n262's page at Knotilus!

Acknowledgement

L11n262 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X14,7,15,8 X8,13,5,14 X11,18,12,19 X19,22,20,9 X15,20,16,21 X21,16,22,17 X17,12,18,13 X2536 X4,9,1,10

Gauss Code: {{1, -10, 2, -11}, {10, -1, 3, -4}, {11, -2, -5, 9, 4, -3, -7, 8, -9, 5, -6, 7, -8, 6}}

Jones Polynomial: - q-13 + 2q-12 - 5q-11 + 6q-10 - 6q-9 + 7q-8 - 4q-7 + 5q-6 - q-5 + q-3

A2 (sl(3)) Invariant: - q-42 - 3q-40 - 2q-38 - 2q-36 - 4q-34 + q-32 + q-30 + 4q-28 + 7q-26 + 6q-24 + 8q-22 + 3q-20 + 4q-18 + 3q-16 + q-12 + q-10

HOMFLY-PT Polynomial: a6z-2 + 4a6 + 8a6z2 + 6a6z4 + a6z6 - a8z-2 - a8 + a8z4 - 2a10z-2 - 7a10 - 5a10z2 + 3a12z-2 + 4a12 - a14z-2

Kauffman Polynomial: a6z-2 - 4a6 + 8a6z2 - 6a6z4 + a6z6 - 2a7z-1 + 4a7z - a7z5 + a8z-2 - 3a8 + 3a8z2 + 2a8z4 - a8z6 + 2a9z-1 - 10a9z + 22a9z3 - 15a9z5 + 3a9z7 - 2a10z-2 + 4a10 - 13a10z2 + 24a10z4 - 18a10z6 + 4a10z8 + 10a11z-1 - 34a11z + 52a11z3 - 33a11z5 + 4a11z7 + a11z9 - 3a12z-2 + 5a12 - 10a12z2 + 24a12z4 - 24a12z6 + 6a12z8 + 8a13z-1 - 27a13z + 39a13z3 - 24a13z5 + 2a13z7 + a13z9 - a14z-2 + a14 - 2a14z2 + 8a14z4 - 8a14z6 + 2a14z8 + 2a15z-1 - 7a15z + 9a15z3 - 5a15z5 + a15z7

Khovanov Homology:
trqj r = -11r = -10r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -5           1
j = -7           1
j = -9        21  
j = -11       4    
j = -13      461   
j = -15     41     
j = -17    241     
j = -19   44       
j = -21  12        
j = -23 14         
j = -25 1          
j = -271           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 262]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 262]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[14, 7, 15, 8], X[8, 13, 5, 14], 
 
>   X[11, 18, 12, 19], X[19, 22, 20, 9], X[15, 20, 16, 21], X[21, 16, 22, 17], 
 
>   X[17, 12, 18, 13], X[2, 5, 3, 6], X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 3, -4}, 
 
>   {11, -2, -5, 9, 4, -3, -7, 8, -9, 5, -6, 7, -8, 6}]
In[6]:=
Jones[L][q]
Out[6]=   
  -13    2     5     6    6    7    4    5     -5    -3
-q    + --- - --- + --- - -- + -- - -- + -- - q   + q
         12    11    10    9    8    7    6
        q     q     q     q    q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -42    3     2     2     4     -32    -30    4     7     6     8     3
-q    - --- - --- - --- - --- + q    + q    + --- + --- + --- + --- + --- + 
         40    38    36    34                  28    26    24    22    20
        q     q     q     q                   q     q     q     q     q
 
     4     3     -12    -10
>   --- + --- + q    + q
     18    16
    q     q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 262]][a, z]
Out[8]=   
                             6    8      10      12    14
   6    8      10      12   a    a    2 a     3 a     a        6  2
4 a  - a  - 7 a   + 4 a   + -- - -- - ----- + ----- - --- + 8 a  z  - 
                             2    2     2       2      2
                            z    z     z       z      z
 
       10  2      6  4    8  4    6  6
>   5 a   z  + 6 a  z  + a  z  + a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 262]][a, z]
Out[9]=   
                                      6    8      10      12    14      7
    6      8      10      12    14   a    a    2 a     3 a     a     2 a
-4 a  - 3 a  + 4 a   + 5 a   + a   + -- + -- - ----- - ----- - --- - ---- + 
                                      2    2     2       2      2     z
                                     z    z     z       z      z
 
       9       11      13      15
    2 a    10 a     8 a     2 a        7         9         11         13
>   ---- + ------ + ----- + ----- + 4 a  z - 10 a  z - 34 a   z - 27 a   z - 
     z       z        z       z
 
       15        6  2      8  2       10  2       12  2      14  2       9  3
>   7 a   z + 8 a  z  + 3 a  z  - 13 a   z  - 10 a   z  - 2 a   z  + 22 a  z  + 
 
        11  3       13  3      15  3      6  4      8  4       10  4
>   52 a   z  + 39 a   z  + 9 a   z  - 6 a  z  + 2 a  z  + 24 a   z  + 
 
        12  4      14  4    7  5       9  5       11  5       13  5
>   24 a   z  + 8 a   z  - a  z  - 15 a  z  - 33 a   z  - 24 a   z  - 
 
       15  5    6  6    8  6       10  6       12  6      14  6      9  7
>   5 a   z  + a  z  - a  z  - 18 a   z  - 24 a   z  - 8 a   z  + 3 a  z  + 
 
       11  7      13  7    15  7      10  8      12  8      14  8    11  9
>   4 a   z  + 2 a   z  + a   z  + 4 a   z  + 6 a   z  + 2 a   z  + a   z  + 
 
     13  9
>   a   z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -7    -5      1         1         1        4        1        2        4
q   + q   + ------- + ------- + ------- + ------ + ------ + ------ + ------ + 
             27  11    25  10    23  10    23  9    21  9    21  8    19  8
            q   t     q   t     q   t     q   t    q   t    q   t    q   t
 
      4        2        4        4        1        1        4        6
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     19  7    17  7    17  6    15  6    17  5    15  5    13  5    13  4
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      4        1        2       1
>   ------ + ------ + ----- + -----
     11  4    13  3    9  3    9  2
    q   t    q   t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n262
L11n261
L11n261
L11n263
L11n263