© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n258
L11n258
L11n260
L11n260
L11n259
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n259

Visit L11n259's page at Knotilus!

Acknowledgement

L11n259 as Morse Link
DrawMorseLink

PD Presentation: X6172 X3,11,4,10 X7,15,8,14 X13,5,14,8 X11,18,12,19 X22,20,9,19 X20,16,21,15 X16,22,17,21 X17,12,18,13 X2536 X9,1,10,4

Gauss Code: {{1, -10, -2, 11}, {10, -1, -3, 4}, {-11, 2, -5, 9, -4, 3, 7, -8, -9, 5, 6, -7, 8, -6}}

Jones Polynomial: - q-2 + 4q-1 - 5 + 8q - 7q2 + 8q3 - 6q4 + 4q5 - q6

A2 (sl(3)) Invariant: - q-6 + 2q-4 + q-2 + 3 + 5q2 + 2q4 + 6q6 + 2q8 + 4q10 + 2q12 + 2q16 - q18

HOMFLY-PT Polynomial: a-4z-2 + a-4 - a-4z2 - a-4z4 - 2a-2z-2 - 3a-2 + a-2z2 + 3a-2z4 + a-2z6 + z-2 + 2 - z2 - z4

Kauffman Polynomial: a-7z3 - a-6z2 + 4a-6z4 + 2a-5z5 + a-5z7 - a-4z-2 + 3a-4 - 3a-4z2 - a-4z4 + 2a-4z6 + a-4z8 + 2a-3z-1 - 3a-3z + a-3z3 - 6a-3z5 + 5a-3z7 - 2a-2z-2 + 5a-2 + a-2z2 - 14a-2z4 + 6a-2z6 + a-2z8 + 2a-1z-1 - 3a-1z + a-1z3 - 7a-1z5 + 4a-1z7 - z-2 + 3 + 3z2 - 9z4 + 4z6 - az3 + az5

Khovanov Homology:
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 13        1
j = 11       3 
j = 9      42 
j = 7     42  
j = 5    34   
j = 3   54    
j = 1  36     
j = -1 12      
j = -3 3       
j = -51        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 259]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 259]]
Out[4]=   
PD[X[6, 1, 7, 2], X[3, 11, 4, 10], X[7, 15, 8, 14], X[13, 5, 14, 8], 
 
>   X[11, 18, 12, 19], X[22, 20, 9, 19], X[20, 16, 21, 15], X[16, 22, 17, 21], 
 
>   X[17, 12, 18, 13], X[2, 5, 3, 6], X[9, 1, 10, 4]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, -2, 11}, {10, -1, -3, 4}, 
 
>   {-11, 2, -5, 9, -4, 3, 7, -8, -9, 5, 6, -7, 8, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
      -2   4            2      3      4      5    6
-5 - q   + - + 8 q - 7 q  + 8 q  - 6 q  + 4 q  - q
           q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -6   2     -2      2      4      6      8      10      12      16    18
3 - q   + -- + q   + 5 q  + 2 q  + 6 q  + 2 q  + 4 q   + 2 q   + 2 q   - q
           4
          q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 259]][a, z]
Out[8]=   
                                           2    2         4      4    6
     -4   3     -2     1       2      2   z    z     4   z    3 z    z
2 + a   - -- + z   + ----- - ----- - z  - -- + -- - z  - -- + ---- + --
           2          4  2    2  2         4    2         4     2     2
          a          a  z    a  z         a    a         a     a     a
In[9]:=
Kauffman[Link[11, NonAlternating, 259]][a, z]
Out[9]=   
                                                                     2      2
    3    5     -2     1       2      2      2    3 z   3 z      2   z    3 z
3 + -- + -- - z   - ----- - ----- + ---- + --- - --- - --- + 3 z  - -- - ---- + 
     4    2          4  2    2  2    3     a z    3     a            6     4
    a    a          a  z    a  z    a  z         a                  a     a
 
     2    3    3    3                    4    4       4      5      5      5
    z    z    z    z       3      4   4 z    z    14 z    2 z    6 z    7 z
>   -- + -- + -- + -- - a z  - 9 z  + ---- - -- - ----- + ---- - ---- - ---- + 
     2    7    3   a                    6     4     2       5      3     a
    a    a    a                        a     a     a       a      a
 
                     6      6    7      7      7    8    8
       5      6   2 z    6 z    z    5 z    4 z    z    z
>   a z  + 4 z  + ---- + ---- + -- + ---- + ---- + -- + --
                    4      2     5     3     a      4    2
                   a      a     a     a            a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
         3     1       3      1      2    3 q      3        5        5  2
6 q + 5 q  + ----- + ----- + ---- + --- + --- + 4 q  t + 3 q  t + 4 q  t  + 
              5  3    3  2      2   q t    t
             q  t    q  t    q t
 
       7  2      7  3      9  3      9  4      11  4    13  5
>   4 q  t  + 2 q  t  + 4 q  t  + 2 q  t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n259
L11n258
L11n258
L11n260
L11n260