© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n256
L11n256
L11n258
L11n258
L11n257
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11n257

Visit L11n257's page at Knotilus!

Acknowledgement

L11n257 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X11,16,12,17 X21,18,22,19 X13,20,14,21 X19,12,20,13 X17,22,18,9 X8,16,5,15 X14,8,15,7 X2536 X4,9,1,10

Gauss Code: {{1, -10, 2, -11}, {10, -1, 9, -8}, {11, -2, -3, 6, -5, -9, 8, 3, -7, 4, -6, 5, -4, 7}}

Jones Polynomial: - q-10 + 2q-9 - 5q-8 + 6q-7 - 6q-6 + 8q-5 - 6q-4 + 6q-3 - 2q-2 + 2q-1

A2 (sl(3)) Invariant: - q-32 - 2q-30 - q-28 - 4q-26 - 3q-24 + 5q-18 + 5q-16 + 6q-14 + 6q-12 + 4q-10 + 6q-8 + 3q-6 + q-4 + 2q-2

HOMFLY-PT Polynomial: a2z-2 + 3a2 + 2a2z2 - a4z-2 - 2a4 - a4z2 - a4z4 - 2a6z-2 - 5a6 - 5a6z2 - 2a6z4 + 3a8z-2 + 5a8 + 3a8z2 - a10z-2 - a10

Kauffman Polynomial: a2z-2 - 4a2 + 3a2z2 - 2a3z-1 + 4a3z - a3z3 + a3z5 + a4z-2 - 3a4 + 4a4z2 - 3a4z4 + 2a4z6 + 2a5z-1 - 10a5z + 17a5z3 - 13a5z5 + 4a5z7 - 2a6z-2 + 4a6 - 4a6z2 + 11a6z4 - 13a6z6 + 4a6z8 + 10a7z-1 - 34a7z + 49a7z3 - 33a7z5 + 5a7z7 + a7z9 - 3a8z-2 + 5a8 - 7a8z2 + 22a8z4 - 23a8z6 + 6a8z8 + 8a9z-1 - 27a9z + 40a9z3 - 24a9z5 + 2a9z7 + a9z9 - a10z-2 + a10 - 2a10z2 + 8a10z4 - 8a10z6 + 2a10z8 + 2a11z-1 - 7a11z + 9a11z3 - 5a11z5 + a11z7

Khovanov Homology:
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -1         2
j = -3        33
j = -5       3 1
j = -7      44  
j = -9     53   
j = -11    251   
j = -13   44     
j = -15  12      
j = -17 14       
j = -19 1        
j = -211         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 257]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 257]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[11, 16, 12, 17], X[21, 18, 22, 19], 
 
>   X[13, 20, 14, 21], X[19, 12, 20, 13], X[17, 22, 18, 9], X[8, 16, 5, 15], 
 
>   X[14, 8, 15, 7], X[2, 5, 3, 6], X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 9, -8}, 
 
>   {11, -2, -3, 6, -5, -9, 8, 3, -7, 4, -6, 5, -4, 7}]
In[6]:=
Jones[L][q]
Out[6]=   
  -10   2    5    6    6    8    6    6    2    2
-q    + -- - -- + -- - -- + -- - -- + -- - -- + -
         9    8    7    6    5    4    3    2   q
        q    q    q    q    q    q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -32    2     -28    4     3     5     5     6     6     4    6    3     -4
-q    - --- - q    - --- - --- + --- + --- + --- + --- + --- + -- + -- + q   + 
         30           26    24    18    16    14    12    10    8    6
        q            q     q     q     q     q     q     q     q    q
 
    2
>   --
     2
    q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 257]][a, z]
Out[8]=   
                                   2    4      6      8    10
   2      4      6      8    10   a    a    2 a    3 a    a        2  2
3 a  - 2 a  - 5 a  + 5 a  - a   + -- - -- - ---- + ---- - --- + 2 a  z  - 
                                   2    2     2      2     2
                                  z    z     z      z     z
 
     4  2      6  2      8  2    4  4      6  4
>   a  z  - 5 a  z  + 3 a  z  - a  z  - 2 a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 257]][a, z]
Out[9]=   
                                    2    4      6      8    10      3      5
    2      4      6      8    10   a    a    2 a    3 a    a     2 a    2 a
-4 a  - 3 a  + 4 a  + 5 a  + a   + -- + -- - ---- - ---- - --- - ---- + ---- + 
                                    2    2     2      2     2     z      z
                                   z    z     z      z     z
 
        7      9      11
    10 a    8 a    2 a        3         5         7         9        11
>   ----- + ---- + ----- + 4 a  z - 10 a  z - 34 a  z - 27 a  z - 7 a   z + 
      z      z       z
 
       2  2      4  2      6  2      8  2      10  2    3  3       5  3
>   3 a  z  + 4 a  z  - 4 a  z  - 7 a  z  - 2 a   z  - a  z  + 17 a  z  + 
 
        7  3       9  3      11  3      4  4       6  4       8  4      10  4
>   49 a  z  + 40 a  z  + 9 a   z  - 3 a  z  + 11 a  z  + 22 a  z  + 8 a   z  + 
 
     3  5       5  5       7  5       9  5      11  5      4  6       6  6
>   a  z  - 13 a  z  - 33 a  z  - 24 a  z  - 5 a   z  + 2 a  z  - 13 a  z  - 
 
        8  6      10  6      5  7      7  7      9  7    11  7      6  8
>   23 a  z  - 8 a   z  + 4 a  z  + 5 a  z  + 2 a  z  + a   z  + 4 a  z  + 
 
       8  8      10  8    7  9    9  9
>   6 a  z  + 2 a   z  + a  z  + a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -5   3    2     1        1        1        4        1        2        4
q   + -- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
       3   q    21  9    19  8    17  8    17  7    15  7    15  6    13  6
      q        q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      4        2        5        5       1        3       4       4       3
>   ------ + ------ + ------ + ----- + ------ + ----- + ----- + ----- + ----- + 
     13  5    11  5    11  4    9  4    11  3    9  3    7  3    7  2    5  2
    q   t    q   t    q   t    q  t    q   t    q  t    q  t    q  t    q  t
 
     3
>   ----
     3
    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n257
L11n256
L11n256
L11n258
L11n258