PD Presentation: |
X12,1,13,2 X16,7,17,8 X5,1,6,10 X3746 X9,5,10,4 X20,14,21,13 X22,17,11,18 X18,21,19,22 X14,20,15,19 X2,11,3,12 X8,15,9,16 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 243]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 243]] |
Out[4]= | PD[X[12, 1, 13, 2], X[16, 7, 17, 8], X[5, 1, 6, 10], X[3, 7, 4, 6],
> X[9, 5, 10, 4], X[20, 14, 21, 13], X[22, 17, 11, 18], X[18, 21, 19, 22],
> X[14, 20, 15, 19], X[2, 11, 3, 12], X[8, 15, 9, 16]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -10, -4, 5, -3, 4, 2, -11, -5, 3},
> {10, -1, 6, -9, 11, -2, 7, -8, 9, -6, 8, -7}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(11/2) 2 5 6 7 7 3/2 5/2
-q + ---- - ---- + ---- - ---- + ------- - 7 Sqrt[q] + 5 q - 3 q +
9/2 7/2 5/2 3/2 Sqrt[q]
q q q q
7/2
> q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -18 2 -14 3 -8 2 2 2 4 6 8 10 12
1 + q + --- + q + --- - q - -- + -- + 2 q + 2 q - q + q - q - q
16 12 4 2
q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 243]][a, z] |
Out[8]= | 3 5 3
1 4 6 a 5 a 2 a z 7 z 3 5 3 z
---- - --- + --- - ---- + ---- + -- - --- + 11 a z - 8 a z + a z - ---- +
3 a z z z z 3 a a
a z a
3 3 3 5
> 8 a z - 3 a z + 2 a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 243]][a, z] |
Out[9]= | 3 5
-4 3 2 4 1 4 6 a 5 a 2 a 3 z 18 z
3 + a + -- + a + a - ---- - --- - --- - ---- - ---- + --- + ---- + 30 a z +
2 3 a z z z z 3 a
a a z a
2 2 3 3
3 5 2 z 8 z 2 2 4 2 3 z 30 z
> 22 a z + 7 a z - 6 z - -- - ---- + 2 a z + a z - ---- - ----- -
4 2 3 a
a a a
4 5
3 3 3 5 3 4 5 z 2 4 4 4 20 z
> 54 a z - 36 a z - 9 a z - 5 z + ---- - 18 a z - 8 a z + ----- +
2 a
a
6 7
5 3 5 5 5 6 2 z 2 6 4 6 5 z
> 38 a z + 23 a z + 5 a z + 12 z - ---- + 22 a z + 8 a z - ---- -
2 a
a
7 3 7 5 7 8 2 8 4 8 9 3 9
> 6 a z - 2 a z - a z - 4 z - 6 a z - 2 a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | -2 2 1 1 1 4 2 3 3
4 + q + 4 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- +
12 6 10 5 8 5 8 4 6 4 6 3 4 3
q t q t q t q t q t q t q t
4 3 4 4 2 4 4 2 6 2 8 3
> ----- + ----- + - + ---- + 2 q t + 3 q t + q t + 2 q t + q t
4 2 2 2 t 2
q t q t q t |