PD Presentation: |
X12,1,13,2 X7,16,8,17 X5,1,6,10 X3746 X9,5,10,4 X18,14,19,13 X22,20,11,19 X20,15,21,16 X14,21,15,22 X2,11,3,12 X17,8,18,9 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 239]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 239]] |
Out[4]= | PD[X[12, 1, 13, 2], X[7, 16, 8, 17], X[5, 1, 6, 10], X[3, 7, 4, 6],
> X[9, 5, 10, 4], X[18, 14, 19, 13], X[22, 20, 11, 19], X[20, 15, 21, 16],
> X[14, 21, 15, 22], X[2, 11, 3, 12], X[17, 8, 18, 9]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -10, -4, 5, -3, 4, -2, 11, -5, 3},
> {10, -1, 6, -9, 8, 2, -11, -6, 7, -8, 9, -7}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(11/2) -(9/2) 2 -(5/2) 1 3/2 5/2
-q + q - ---- + q - ------- + Sqrt[q] - 2 q + 2 q -
7/2 Sqrt[q]
q
7/2 9/2
> 2 q + q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -18 2 2 2 2 -4 -2 2 4 6 10 14
1 + q + --- + --- + --- - -- - q + q + 3 q + q + q - q - q
16 14 12 6
q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 239]][a, z] |
Out[8]= | 3 5 3
1 4 6 a 5 a 2 a 2 z 8 z 3 5 z
---- - --- + --- - ---- + ---- + --- - --- + 10 a z - 7 a z + a z + -- -
3 a z z z z 3 a 3
a z a a
3 5
5 z 3 3 3 z 5
> ---- + 6 a z - 2 a z - -- + a z
a a |
In[9]:= | Kauffman[Link[11, NonAlternating, 239]][a, z] |
Out[9]= | 3 5
-4 3 2 4 1 4 6 a 5 a 2 a 4 z 18 z
3 + a + -- + a + a - ---- - --- - --- - ---- - ---- + --- + ---- + 28 a z +
2 3 a z z z z 3 a
a a z a
2 2 3 3
3 5 2 3 z 9 z 2 2 9 z 29 z 3
> 22 a z + 8 a z - 7 z - ---- - ---- - a z - ---- - ----- - 42 a z -
4 2 3 a
a a a
4 4 5 5
3 3 5 3 4 4 z 4 z 2 4 4 4 9 z 18 z
> 33 a z - 11 a z - z + ---- + ---- - 6 a z - 5 a z + ---- + ----- +
4 2 3 a
a a a
6 6
5 3 5 5 5 6 z 3 z 2 6 4 6
> 22 a z + 19 a z + 6 a z + 5 z - -- + ---- + 6 a z + 5 a z -
4 2
a a
7 7 8
2 z 3 z 7 3 7 5 7 8 z 2 8 4 8
> ---- - ---- - 3 a z - 3 a z - a z - z - -- - a z - a z
3 a 2
a a |
In[10]:= | Kh[L][q, t] |
Out[10]= | 2 2 1 1 2 1 1 1 1 1
3 + -- + q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ----- +
2 12 6 8 5 8 4 6 4 6 3 4 3 6 2 4 2
q q t q t q t q t q t q t q t q t
1 1 1 2 2 4 2 2 4 2 4 3
> ----- + - + ---- + ---- + 2 t + q t + q t + q t + 2 q t + q t +
2 2 t 4 2
q t q t q t
6 3 6 4 8 4 10 5
> q t + q t + q t + q t |