© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n238
L11n238
L11n240
L11n240
L11n239
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n239

Visit L11n239's page at Knotilus!

Acknowledgement

L11n239 as Morse Link
DrawMorseLink

PD Presentation: X12,1,13,2 X7,16,8,17 X5,1,6,10 X3746 X9,5,10,4 X18,14,19,13 X22,20,11,19 X20,15,21,16 X14,21,15,22 X2,11,3,12 X17,8,18,9

Gauss Code: {{1, -10, -4, 5, -3, 4, -2, 11, -5, 3}, {10, -1, 6, -9, 8, 2, -11, -6, 7, -8, 9, -7}}

Jones Polynomial: - q-11/2 + q-9/2 - 2q-7/2 + q-5/2 - q-1/2 + q1/2 - 2q3/2 + 2q5/2 - 2q7/2 + q9/2

A2 (sl(3)) Invariant: q-18 + 2q-16 + 2q-14 + 2q-12 - 2q-6 - q-4 + q-2 + 1 + 3q2 + q4 + q6 - q10 - q14

HOMFLY-PT Polynomial: a-3z-1 + 2a-3z + a-3z3 - 4a-1z-1 - 8a-1z - 5a-1z3 - a-1z5 + 6az-1 + 10az + 6az3 + az5 - 5a3z-1 - 7a3z - 2a3z3 + 2a5z-1 + a5z

Kauffman Polynomial: a-4 - 3a-4z2 + 4a-4z4 - a-4z6 - a-3z-1 + 4a-3z - 9a-3z3 + 9a-3z5 - 2a-3z7 + 3a-2 - 9a-2z2 + 4a-2z4 + 3a-2z6 - a-2z8 - 4a-1z-1 + 18a-1z - 29a-1z3 + 18a-1z5 - 3a-1z7 + 3 - 7z2 - z4 + 5z6 - z8 - 6az-1 + 28az - 42az3 + 22az5 - 3az7 + a2 - a2z2 - 6a2z4 + 6a2z6 - a2z8 - 5a3z-1 + 22a3z - 33a3z3 + 19a3z5 - 3a3z7 + a4 - 5a4z4 + 5a4z6 - a4z8 - 2a5z-1 + 8a5z - 11a5z3 + 6a5z5 - a5z7

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 10           1
j = 8          1 
j = 6         11 
j = 4       121  
j = 2      111   
j = 0     132    
j = -2    122     
j = -4   111      
j = -6  111       
j = -8 12         
j = -10            
j = -121           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 239]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 239]]
Out[4]=   
PD[X[12, 1, 13, 2], X[7, 16, 8, 17], X[5, 1, 6, 10], X[3, 7, 4, 6], 
 
>   X[9, 5, 10, 4], X[18, 14, 19, 13], X[22, 20, 11, 19], X[20, 15, 21, 16], 
 
>   X[14, 21, 15, 22], X[2, 11, 3, 12], X[17, 8, 18, 9]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, -4, 5, -3, 4, -2, 11, -5, 3}, 
 
>   {10, -1, 6, -9, 8, 2, -11, -6, 7, -8, 9, -7}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(11/2)    -(9/2)    2      -(5/2)      1                   3/2      5/2
-q        + q       - ---- + q       - ------- + Sqrt[q] - 2 q    + 2 q    - 
                       7/2             Sqrt[q]
                      q
 
       7/2    9/2
>   2 q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -18    2     2     2    2     -4    -2      2    4    6    10    14
1 + q    + --- + --- + --- - -- - q   + q   + 3 q  + q  + q  - q   - q
            16    14    12    6
           q     q     q     q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 239]][a, z]
Out[8]=   
                      3      5                                         3
 1      4    6 a   5 a    2 a    2 z   8 z               3      5     z
---- - --- + --- - ---- + ---- + --- - --- + 10 a z - 7 a  z + a  z + -- - 
 3     a z    z     z      z      3     a                              3
a  z                             a                                    a
 
       3                       5
    5 z         3      3  3   z       5
>   ---- + 6 a z  - 2 a  z  - -- + a z
     a                        a
In[9]:=
Kauffman[Link[11, NonAlternating, 239]][a, z]
Out[9]=   
                                               3      5
     -4   3     2    4    1      4    6 a   5 a    2 a    4 z   18 z
3 + a   + -- + a  + a  - ---- - --- - --- - ---- - ---- + --- + ---- + 28 a z + 
           2              3     a z    z     z      z      3     a
          a              a  z                             a
 
                                 2      2              3       3
        3        5        2   3 z    9 z     2  2   9 z    29 z          3
>   22 a  z + 8 a  z - 7 z  - ---- - ---- - a  z  - ---- - ----- - 42 a z  - 
                                4      2              3      a
                               a      a              a
 
                                  4      4                          5       5
        3  3       5  3    4   4 z    4 z       2  4      4  4   9 z    18 z
>   33 a  z  - 11 a  z  - z  + ---- + ---- - 6 a  z  - 5 a  z  + ---- + ----- + 
                                 4      2                          3      a
                                a      a                          a
 
                                           6      6
          5       3  5      5  5      6   z    3 z       2  6      4  6
>   22 a z  + 19 a  z  + 6 a  z  + 5 z  - -- + ---- + 6 a  z  + 5 a  z  - 
                                           4     2
                                          a     a
 
       7      7                                    8
    2 z    3 z         7      3  7    5  7    8   z     2  8    4  8
>   ---- - ---- - 3 a z  - 3 a  z  - a  z  - z  - -- - a  z  - a  z
      3     a                                      2
     a                                            a
In[10]:=
Kh[L][q, t]
Out[10]=   
    2     2     1        1       2       1       1       1       1       1
3 + -- + q  + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ----- + 
     2         12  6    8  5    8  4    6  4    6  3    4  3    6  2    4  2
    q         q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
      1     1    1      2            2      4      2  2      4  2    4  3
>   ----- + - + ---- + ---- + 2 t + q  t + q  t + q  t  + 2 q  t  + q  t  + 
     2  2   t    4      2
    q  t        q  t   q  t
 
     6  3    6  4    8  4    10  5
>   q  t  + q  t  + q  t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n239
L11n238
L11n238
L11n240
L11n240