PD Presentation: |
X10,1,11,2 X5,20,6,21 X14,3,15,4 X4,15,5,16 X19,22,20,9 X16,7,17,8 X18,12,19,11 X12,18,13,17 X2,9,3,10 X8,13,1,14 X21,6,22,7 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 235]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 235]] |
Out[4]= | PD[X[10, 1, 11, 2], X[5, 20, 6, 21], X[14, 3, 15, 4], X[4, 15, 5, 16],
> X[19, 22, 20, 9], X[16, 7, 17, 8], X[18, 12, 19, 11], X[12, 18, 13, 17],
> X[2, 9, 3, 10], X[8, 13, 1, 14], X[21, 6, 22, 7]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -9, 3, -4, -2, 11, 6, -10},
> {9, -1, 7, -8, 10, -3, 4, -6, 8, -7, -5, 2, -11, 5}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(19/2) -(15/2) 2 2 3 3 3 2 1
-q + q - ----- + ----- - ---- + ---- - ---- + ---- - -------
13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | 2 -26 -24 -22 2 2 -14 -2
--- + q + q + q + --- + --- - q + q
30 20 16
q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 235]][a, z] |
Out[8]= | 7 9
a a 3 5 7 9 3 3 5 3 7 3
-(--) + -- - 3 a z + 2 a z - 5 a z + 2 a z - 4 a z + 6 a z - 5 a z -
z z
3 5 5 5 7 5 5 7
> a z + 5 a z - a z + a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 235]][a, z] |
Out[9]= | 7 9
8 a a 3 5 7 9 11 4 2 6 2
a - -- - -- + 3 a z + a z + 5 a z + 3 a z - 4 a z + 5 a z + 5 a z -
z z
8 2 10 2 3 3 5 3 7 3 9 3 11 3
> a z - a z - 7 a z - 7 a z - 7 a z - 2 a z + 5 a z -
4 4 6 4 8 4 10 4 3 5 5 5 9 5
> 13 a z - 18 a z - 4 a z + a z + 5 a z + 3 a z + a z -
11 5 4 6 6 6 8 6 3 7 5 7 7 7
> a z + 10 a z + 15 a z + 5 a z - a z + 3 a z + 4 a z -
4 8 6 8 8 8 5 9 7 9
> 2 a z - 3 a z - a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 2 2 1 1 1 2 1 1 3
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
6 4 20 8 18 8 16 6 16 5 12 5 14 4 12 4
q q q t q t q t q t q t q t q t
2 1 1 2 2 1 2 t t 2
> ------ + ------ + ----- + ------ + ----- + ---- + ---- + -- + -- + t
12 3 10 3 8 3 10 2 8 2 8 6 4 2
q t q t q t q t q t q t q t q q |