© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n231
L11n231
L11n233
L11n233
L11n232
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n232

Visit L11n232's page at Knotilus!

Acknowledgement

L11n232 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X18,11,19,12 X8,9,1,10 X22,19,9,20 X20,6,21,5 X4,22,5,21 X7,15,8,14 X12,4,13,3 X13,16,14,17 X15,7,16,6 X2,18,3,17

Gauss Code: {{1, -11, 8, -6, 5, 10, -7, -3}, {3, -1, 2, -8, -9, 7, -10, 9, 11, -2, 4, -5, 6, -4}}

Jones Polynomial: - q-5/2 + 3q-3/2 - 4q-1/2 + 4q1/2 - 5q3/2 + 4q5/2 - 4q7/2 + 2q9/2 - q11/2

A2 (sl(3)) Invariant: q-8 - q-6 - 1 + q2 + 2q6 + 2q8 + q10 + 2q12 + q16 + q18

HOMFLY-PT Polynomial: - a-5z-1 - a-5z + a-3z-1 + 4a-3z + 2a-3z3 - 2a-1z - 3a-1z3 - a-1z5 + az + az3

Kauffman Polynomial: - a-5z-1 + 5a-5z - 8a-5z3 + 5a-5z5 - a-5z7 + a-4 + 2a-4z2 - 10a-4z4 + 9a-4z6 - 2a-4z8 - a-3z-1 + 8a-3z - 18a-3z3 + 11a-3z5 + a-3z7 - a-3z9 + 4a-2z2 - 17a-2z4 + 17a-2z6 - 4a-2z8 + 5a-1z - 15a-1z3 + 10a-1z5 + a-1z7 - a-1z9 + z2 - 7z4 + 8z6 - 2z8 + 2az - 5az3 + 4az5 - az7 - a2z2

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 12        1
j = 10       1 
j = 8      31 
j = 6     22  
j = 4    32   
j = 2  122    
j = 0  33     
j = -2 12      
j = -4 2       
j = -61        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 232]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 232]]
Out[4]=   
PD[X[10, 1, 11, 2], X[18, 11, 19, 12], X[8, 9, 1, 10], X[22, 19, 9, 20], 
 
>   X[20, 6, 21, 5], X[4, 22, 5, 21], X[7, 15, 8, 14], X[12, 4, 13, 3], 
 
>   X[13, 16, 14, 17], X[15, 7, 16, 6], X[2, 18, 3, 17]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -11, 8, -6, 5, 10, -7, -3}, 
 
>   {3, -1, 2, -8, -9, 7, -10, 9, 11, -2, 4, -5, 6, -4}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(5/2)    3        4                     3/2      5/2      7/2      9/2
-q       + ---- - ------- + 4 Sqrt[q] - 5 q    + 4 q    - 4 q    + 2 q    - 
            3/2   Sqrt[q]
           q
 
     11/2
>   q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -8    -6    2      6      8    10      12    16    18
-1 + q   - q   + q  + 2 q  + 2 q  + q   + 2 q   + q   + q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 232]][a, z]
Out[8]=   
                                           3      3           5
   1       1     z    4 z   2 z         2 z    3 z       3   z
-(----) + ---- - -- + --- - --- + a z + ---- - ---- + a z  - --
   5       3      5    3     a            3     a            a
  a  z    a  z   a    a                  a
In[9]:=
Kauffman[Link[11, NonAlternating, 232]][a, z]
Out[9]=   
                                                      2      2              3
 -4    1      1     5 z   8 z   5 z            2   2 z    4 z     2  2   8 z
a   - ---- - ---- + --- + --- + --- + 2 a z + z  + ---- + ---- - a  z  - ---- - 
       5      3      5     3     a                   4      2              5
      a  z   a  z   a     a                         a      a              a
 
        3       3                       4       4      5       5       5
    18 z    15 z         3      4   10 z    17 z    5 z    11 z    10 z
>   ----- - ----- - 5 a z  - 7 z  - ----- - ----- + ---- + ----- + ----- + 
      3       a                       4       2       5      3       a
     a                               a       a       a      a
 
                       6       6    7    7    7                    8      8
         5      6   9 z    17 z    z    z    z       7      8   2 z    4 z
>   4 a z  + 8 z  + ---- + ----- - -- + -- + -- - a z  - 2 z  - ---- - ---- - 
                      4      2      5    3   a                    4      2
                     a      a      a    a                        a      a
 
     9    9
    z    z
>   -- - --
     3   a
    a
In[10]:=
Kh[L][q, t]
Out[10]=   
    2     2     1      2      1              2        2  2      4  2
3 + -- + q  + ----- + ---- + ---- + 3 t + 2 q  t + 2 q  t  + 3 q  t  + 
     2         6  2    4      2
    q         q  t    q  t   q  t
 
       4  3      6  3      6  4      8  4    8  5    10  5    12  6
>   2 q  t  + 2 q  t  + 2 q  t  + 3 q  t  + q  t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n232
L11n231
L11n231
L11n233
L11n233