© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n225
L11n225
L11n227
L11n227
L11n226
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n226

Visit L11n226's page at Knotilus!

Acknowledgement

L11n226 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X18,11,19,12 X6,9,7,10 X7,21,8,20 X19,1,20,8 X22,15,9,16 X3,12,4,13 X16,6,17,5 X13,4,14,5 X14,21,15,22 X2,18,3,17

Gauss Code: {{1, -11, -7, 9, 8, -3, -4, 5}, {3, -1, 2, 7, -9, -10, 6, -8, 11, -2, -5, 4, 10, -6}}

Jones Polynomial: q-15/2 - q-13/2 - q-3/2 - q1/2

A2 (sl(3)) Invariant: - q-24 - q-14 + 2q-8 + 2q-6 + 2q-4 + 2q-2 + 2 + q2

HOMFLY-PT Polynomial: - 2az-1 - 4az - az3 + 3a3z-1 + 6a3z + 5a3z3 + a3z5 - a5z-1 - a5z - a7z

Kauffman Polynomial: 2az-1 - 7az + 5az3 - az5 - 3a2 + 4a2z2 - a2z4 + 3a3z-1 - 11a3z + 15a3z3 - 7a3z5 + a3z7 - 3a4 + 10a4z2 - 6a4z4 + a4z6 + a5z-1 - 2a5z + a5z3 - a6 + a6z2 + 2a7z - 9a7z3 + 6a7z5 - a7z7 - 5a8z2 + 5a8z4 - a8z6

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 2         1
j = 0       1  
j = -2      131 
j = -4     111  
j = -6    121   
j = -8   121    
j = -10   11     
j = -12 111      
j = -14          
j = -161         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 226]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 226]]
Out[4]=   
PD[X[10, 1, 11, 2], X[18, 11, 19, 12], X[6, 9, 7, 10], X[7, 21, 8, 20], 
 
>   X[19, 1, 20, 8], X[22, 15, 9, 16], X[3, 12, 4, 13], X[16, 6, 17, 5], 
 
>   X[13, 4, 14, 5], X[14, 21, 15, 22], X[2, 18, 3, 17]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -11, -7, 9, 8, -3, -4, 5}, 
 
>   {3, -1, 2, 7, -9, -10, 6, -8, 11, -2, -5, 4, 10, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(15/2)    -(13/2)    -(3/2)
q        - q        - q       - Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -24    -14   2    2    2    2     2
2 - q    - q    + -- + -- + -- + -- + q
                   8    6    4    2
                  q    q    q    q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 226]][a, z]
Out[8]=   
          3    5
-2 a   3 a    a               3      5      7        3      3  3    3  5
---- + ---- - -- - 4 a z + 6 a  z - a  z - a  z - a z  + 5 a  z  + a  z
 z      z     z
In[9]:=
Kauffman[Link[11, NonAlternating, 226]][a, z]
Out[9]=   
                             3    5
    2      4    6   2 a   3 a    a                3        5        7
-3 a  - 3 a  - a  + --- + ---- + -- - 7 a z - 11 a  z - 2 a  z + 2 a  z + 
                     z     z     z
 
       2  2       4  2    6  2      8  2        3       3  3    5  3
>   4 a  z  + 10 a  z  + a  z  - 5 a  z  + 5 a z  + 15 a  z  + a  z  - 
 
       7  3    2  4      4  4      8  4      5      3  5      7  5    4  6
>   9 a  z  - a  z  - 6 a  z  + 5 a  z  - a z  - 7 a  z  + 6 a  z  + a  z  - 
 
     8  6    3  7    7  7
>   a  z  + a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
     -4   3      1        1        1        1        1        1       1
1 + q   + -- + ------ + ------ + ------ + ------ + ------ + ----- + ------ + 
           2    16  7    12  6    12  5    12  4    10  4    8  4    10  3
          q    q   t    q   t    q   t    q   t    q   t    q  t    q   t
 
      2       1       1       2       1      1      1      1     t     2  2
>   ----- + ----- + ----- + ----- + ----- + ---- + ---- + ---- + -- + q  t
     8  3    6  3    8  2    6  2    4  2    6      4      2      2
    q  t    q  t    q  t    q  t    q  t    q  t   q  t   q  t   q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n226
L11n225
L11n225
L11n227
L11n227