PD Presentation: |
X10,1,11,2 X3,12,4,13 X16,9,17,10 X20,12,21,11 X22,15,9,16 X5,14,6,15 X7,18,8,19 X13,4,14,5 X17,6,18,7 X19,8,20,1 X2,21,3,22 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 224]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 224]] |
Out[4]= | PD[X[10, 1, 11, 2], X[3, 12, 4, 13], X[16, 9, 17, 10], X[20, 12, 21, 11],
> X[22, 15, 9, 16], X[5, 14, 6, 15], X[7, 18, 8, 19], X[13, 4, 14, 5],
> X[17, 6, 18, 7], X[19, 8, 20, 1], X[2, 21, 3, 22]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -11, -2, 8, -6, 9, -7, 10},
> {3, -1, 4, 2, -8, 6, 5, -3, -9, 7, -10, -4, 11, -5}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(25/2) 2 3 3 3 3 2 -(7/2)
-q + ----- - ----- + ----- - ----- + ----- - ----- - q
23/2 21/2 19/2 17/2 15/2 13/2
q q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -38 -36 -34 -32 -28 -26 -24 -20 2 -16 -14 -12
q - q + q + q + q - q + q + q + --- + q + q + q
18
q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 224]][a, z] |
Out[8]= | 7 9
a a 7 9 11 7 3 9 3 11 3 7 5
-(--) + -- - 9 a z + 4 a z + a z - 14 a z + 2 a z + a z - 7 a z -
z z
7 7
> a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 224]][a, z] |
Out[9]= | 7 9
8 a a 7 9 11 13 15 8 2 10 2
a - -- - -- + 9 a z + 5 a z - 3 a z - a z - 2 a z - 5 a z - a z +
z z
12 2 14 2 7 3 9 3 11 3 13 3 15 3
> a z - 3 a z - 14 a z - 8 a z + 6 a z + 3 a z + 3 a z +
8 4 10 4 12 4 14 4 7 5 9 5 11 5
> 2 a z - a z + 3 a z + 6 a z + 7 a z + 2 a z - 3 a z +
13 5 15 5 12 6 14 6 7 7 13 7
> a z - a z - 2 a z - 2 a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | -8 -6 1 1 1 2 2 2 1
q + q + ------- + ------ + ------ + ------ + ------ + ------ + ------ +
26 10 24 9 22 9 22 8 20 8 20 7 18 7
q t q t q t q t q t q t q t
2 2 1 2 2 2 2 1
> ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
18 6 16 6 18 5 16 5 14 5 14 4 12 4 14 3
q t q t q t q t q t q t q t q t
1 1
> ------ + ------
10 3 10 2
q t q t |