© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n221
L11n221
L11n223
L11n223
L11n222
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n222

Visit L11n222's page at Knotilus!

Acknowledgement

L11n222 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X2,11,3,12 X12,3,13,4 X13,20,14,21 X5,14,6,15 X4,21,5,22 X16,9,17,10 X22,15,9,16 X17,6,18,7 X7,18,8,19 X19,8,20,1

Gauss Code: {{1, -2, 3, -6, -5, 9, -10, 11}, {7, -1, 2, -3, -4, 5, 8, -7, -9, 10, -11, 4, 6, -8}}

Jones Polynomial: - q-27/2 + 2q-25/2 - 2q-23/2 + 2q-21/2 - 2q-19/2 + q-17/2 - q-13/2 - q-9/2

A2 (sl(3)) Invariant: - q-44 + q-42 - q-34 + q-32 + q-28 + q-26 + q-24 + 2q-22 + 2q-20 + q-18 + q-16

HOMFLY-PT Polynomial: - 2a9z-1 - 17a9z - 36a9z3 - 28a9z5 - 9a9z7 - a9z9 + 3a11z-1 + 15a11z + 19a11z3 + 8a11z5 + a11z7 - a13z-1 - 2a13z - a13z3

Kauffman Polynomial: 2a9z-1 - 17a9z + 36a9z3 - 28a9z5 + 9a9z7 - a9z9 - 3a10 + 15a10z2 - 19a10z4 + 8a10z6 - a10z8 + 3a11z-1 - 18a11z + 34a11z3 - 27a11z5 + 9a11z7 - a11z9 - 3a12 + 14a12z2 - 19a12z4 + 8a12z6 - a12z8 + a13z-1 - a13z - a13z3 - a14 + 2a14z2 - 2a14z4 + a15z - a15z5 + 3a16z2 - 2a16z4 + a17z - a17z3

Khovanov Homology:
trqj r = -10r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -8          1
j = -10          1
j = -12        1  
j = -14      1    
j = -16     111   
j = -18    21     
j = -20    11     
j = -22  22       
j = -24 11        
j = -26 1         
j = -281          


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 222]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 222]]
Out[4]=   
PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[13, 20, 14, 21], 
 
>   X[5, 14, 6, 15], X[4, 21, 5, 22], X[16, 9, 17, 10], X[22, 15, 9, 16], 
 
>   X[17, 6, 18, 7], X[7, 18, 8, 19], X[19, 8, 20, 1]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -6, -5, 9, -10, 11}, 
 
>   {7, -1, 2, -3, -4, 5, 8, -7, -9, 10, -11, 4, 6, -8}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(27/2)     2       2       2       2      -(17/2)    -(13/2)    -(9/2)
-q        + ----- - ----- + ----- - ----- + q        - q        - q
             25/2    23/2    21/2    19/2
            q       q       q       q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -44    -42    -34    -32    -28    -26    -24    2     2     -18    -16
-q    + q    - q    + q    + q    + q    + q    + --- + --- + q    + q
                                                   22    20
                                                  q     q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 222]][a, z]
Out[8]=   
    9      11    13
-2 a    3 a     a         9         11        13         9  3       11  3
----- + ----- - --- - 17 a  z + 15 a   z - 2 a   z - 36 a  z  + 19 a   z  - 
  z       z      z
 
     13  3       9  5      11  5      9  7    11  7    9  9
>   a   z  - 28 a  z  + 8 a   z  - 9 a  z  + a   z  - a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 222]][a, z]
Out[9]=   
                          9      11    13
    10      12    14   2 a    3 a     a         9         11      13
-3 a   - 3 a   - a   + ---- + ----- + --- - 17 a  z - 18 a   z - a   z + 
                        z       z      z
 
     15      17         10  2       12  2      14  2      16  2       9  3
>   a   z + a   z + 15 a   z  + 14 a   z  + 2 a   z  + 3 a   z  + 36 a  z  + 
 
        11  3    13  3    17  3       10  4       12  4      14  4      16  4
>   34 a   z  - a   z  - a   z  - 19 a   z  - 19 a   z  - 2 a   z  - 2 a   z  - 
 
        9  5       11  5    15  5      10  6      12  6      9  7      11  7
>   28 a  z  - 27 a   z  - a   z  + 8 a   z  + 8 a   z  + 9 a  z  + 9 a   z  - 
 
     10  8    12  8    9  9    11  9
>   a   z  - a   z  - a  z  - a   z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -10    -8      1        1        1        1        2        2        1
q    + q   + ------- + ------ + ------ + ------ + ------ + ------ + ------ + 
              28  10    26  9    24  9    24  8    22  8    22  7    20  6
             q   t     q   t    q   t    q   t    q   t    q   t    q   t
 
      2        1        1        1        1        1        1        1
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------
     18  6    20  5    18  5    16  5    16  4    14  4    16  3    12  2
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n222
L11n221
L11n221
L11n223
L11n223