PD Presentation: |
X10,1,11,2 X2,11,3,12 X12,3,13,4 X13,20,14,21 X5,14,6,15 X4,21,5,22 X16,9,17,10 X22,15,9,16 X17,6,18,7 X7,18,8,19 X19,8,20,1 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 222]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 222]] |
Out[4]= | PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[13, 20, 14, 21],
> X[5, 14, 6, 15], X[4, 21, 5, 22], X[16, 9, 17, 10], X[22, 15, 9, 16],
> X[17, 6, 18, 7], X[7, 18, 8, 19], X[19, 8, 20, 1]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -2, 3, -6, -5, 9, -10, 11},
> {7, -1, 2, -3, -4, 5, 8, -7, -9, 10, -11, 4, 6, -8}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(27/2) 2 2 2 2 -(17/2) -(13/2) -(9/2)
-q + ----- - ----- + ----- - ----- + q - q - q
25/2 23/2 21/2 19/2
q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -44 -42 -34 -32 -28 -26 -24 2 2 -18 -16
-q + q - q + q + q + q + q + --- + --- + q + q
22 20
q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 222]][a, z] |
Out[8]= | 9 11 13
-2 a 3 a a 9 11 13 9 3 11 3
----- + ----- - --- - 17 a z + 15 a z - 2 a z - 36 a z + 19 a z -
z z z
13 3 9 5 11 5 9 7 11 7 9 9
> a z - 28 a z + 8 a z - 9 a z + a z - a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 222]][a, z] |
Out[9]= | 9 11 13
10 12 14 2 a 3 a a 9 11 13
-3 a - 3 a - a + ---- + ----- + --- - 17 a z - 18 a z - a z +
z z z
15 17 10 2 12 2 14 2 16 2 9 3
> a z + a z + 15 a z + 14 a z + 2 a z + 3 a z + 36 a z +
11 3 13 3 17 3 10 4 12 4 14 4 16 4
> 34 a z - a z - a z - 19 a z - 19 a z - 2 a z - 2 a z -
9 5 11 5 15 5 10 6 12 6 9 7 11 7
> 28 a z - 27 a z - a z + 8 a z + 8 a z + 9 a z + 9 a z -
10 8 12 8 9 9 11 9
> a z - a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | -10 -8 1 1 1 1 2 2 1
q + q + ------- + ------ + ------ + ------ + ------ + ------ + ------ +
28 10 26 9 24 9 24 8 22 8 22 7 20 6
q t q t q t q t q t q t q t
2 1 1 1 1 1 1 1
> ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------
18 6 20 5 18 5 16 5 16 4 14 4 16 3 12 2
q t q t q t q t q t q t q t q t |