© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n217
L11n217
L11n219
L11n219
L11n218
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n218

Visit L11n218's page at Knotilus!

Acknowledgement

L11n218 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X8,9,1,10 X3,12,4,13 X22,16,9,15 X17,3,18,2 X21,4,22,5 X5,15,6,14 X13,21,14,20 X16,12,17,11 X19,7,20,6 X7,19,8,18

Gauss Code: {{1, 5, -3, 6, -7, 10, -11, -2}, {2, -1, 9, 3, -8, 7, 4, -9, -5, 11, -10, 8, -6, -4}}

Jones Polynomial: - q-3/2 + q-1/2 - q1/2 - q5/2 - q7/2 + q9/2 - q11/2 + q13/2

A2 (sl(3)) Invariant: q-6 + 1 + q2 + 3q4 + 2q6 + 3q8 + q10 - q16 - q18 - q20

HOMFLY-PT Polynomial: a-5z-1 + 3a-5z + a-5z3 - 3a-3z-1 - 6a-3z - 5a-3z3 - a-3z5 + 2a-1z-1 + 2a-1z + az

Kauffman Polynomial: - a-6 + 11a-6z2 - 15a-6z4 + 7a-6z6 - a-6z8 + a-5z-1 - 6a-5z + 13a-5z3 - 15a-5z5 + 7a-5z7 - a-5z9 - 3a-4 + 18a-4z2 - 28a-4z4 + 14a-4z6 - 2a-4z8 + 3a-3z-1 - 11a-3z + 15a-3z3 - 15a-3z5 + 7a-3z7 - a-3z9 - 3a-2 + 10a-2z2 - 14a-2z4 + 7a-2z6 - a-2z8 + 2a-1z-1 - 3a-1z + a-1z3 + 3z2 - z4 + 2az - az3

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 14         1
j = 12          
j = 10       11 
j = 8     11   
j = 6    1 1   
j = 4    21    
j = 2  21      
j = 0 121      
j = -2          
j = -41         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 218]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 218]]
Out[4]=   
PD[X[10, 1, 11, 2], X[8, 9, 1, 10], X[3, 12, 4, 13], X[22, 16, 9, 15], 
 
>   X[17, 3, 18, 2], X[21, 4, 22, 5], X[5, 15, 6, 14], X[13, 21, 14, 20], 
 
>   X[16, 12, 17, 11], X[19, 7, 20, 6], X[7, 19, 8, 18]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 5, -3, 6, -7, 10, -11, -2}, 
 
>   {2, -1, 9, 3, -8, 7, 4, -9, -5, 11, -10, 8, -6, -4}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(3/2)      1                 5/2    7/2    9/2    11/2    13/2
-q       + ------- - Sqrt[q] - q    - q    + q    - q     + q
           Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -6    2      4      6      8    10    16    18    20
1 + q   + q  + 3 q  + 2 q  + 3 q  + q   - q   - q   - q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 218]][a, z]
Out[8]=   
                                             3      3    5
 1      3      2    3 z   6 z   2 z         z    5 z    z
---- - ---- + --- + --- - --- + --- + a z + -- - ---- - --
 5      3     a z    5     3     a           5     3     3
a  z   a  z         a     a                 a     a     a
In[9]:=
Kauffman[Link[11, NonAlternating, 218]][a, z]
Out[9]=   
                                                                           2
  -6   3    3     1      3      2    6 z   11 z   3 z              2   11 z
-a   - -- - -- + ---- + ---- + --- - --- - ---- - --- + 2 a z + 3 z  + ----- + 
        4    2    5      3     a z    5      3     a                     6
       a    a    a  z   a  z         a      a                           a
 
        2       2       3       3    3                   4       4       4
    18 z    10 z    13 z    15 z    z       3    4   15 z    28 z    14 z
>   ----- + ----- + ----- + ----- + -- - a z  - z  - ----- - ----- - ----- - 
      4       2       5       3     a                  6       4       2
     a       a       a       a                        a       a       a
 
        5       5      6       6      6      7      7    8      8    8    9    9
    15 z    15 z    7 z    14 z    7 z    7 z    7 z    z    2 z    z    z    z
>   ----- - ----- + ---- + ----- + ---- + ---- + ---- - -- - ---- - -- - -- - --
      5       3       6      4       2      5      3     6     4     2    5    3
     a       a       a      a       a      a      a     a     a     a    a    a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1     1        2        4  2    6  2    4  3    8  3    6  4
2 + 2 q  + ----- + - + t + q  t + 2 q  t  + q  t  + q  t  + q  t  + q  t  + 
            4  2   t
           q  t
 
     8  4    10  5    10  6    14  7
>   q  t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n218
L11n217
L11n217
L11n219
L11n219