PD Presentation: |
X10,1,11,2 X13,21,14,20 X3,12,4,13 X2,19,3,20 X14,5,15,6 X16,7,17,8 X8,9,1,10 X18,12,19,11 X6,15,7,16 X22,18,9,17 X21,4,22,5 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 212]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 212]] |
Out[4]= | PD[X[10, 1, 11, 2], X[13, 21, 14, 20], X[3, 12, 4, 13], X[2, 19, 3, 20],
> X[14, 5, 15, 6], X[16, 7, 17, 8], X[8, 9, 1, 10], X[18, 12, 19, 11],
> X[6, 15, 7, 16], X[22, 18, 9, 17], X[21, 4, 22, 5]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -4, -3, 11, 5, -9, 6, -7},
> {7, -1, 8, 3, -2, -5, 9, -6, 10, -8, 4, 2, -11, -10}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(19/2) 2 4 5 7 7 6 4 3 1
-q + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ---- + -------
17/2 15/2 13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -28 2 -22 -20 3 2 -12 -8 -6 -4 -2
q + --- + q + q + --- + --- - q + q - q + q - q
24 18 14
q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 212]][a, z] |
Out[8]= | 3 5 7
a 3 a 2 a 3 5 7 3 3 5 3 7 3
-- - ---- + ---- + 2 a z - 11 a z + 5 a z + 3 a z - 13 a z + 4 a z +
z z z
3 5 5 5 7 5 5 7
> a z - 6 a z + a z - a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 212]][a, z] |
Out[9]= | 3 5 7
2 4 6 a 3 a 2 a 3 5 7 9
-a - 3 a - 3 a + -- + ---- + ---- - 2 a z - 14 a z - 6 a z + 5 a z -
z z z
11 2 2 4 2 6 2 10 2 3 3 5 3
> a z + 2 a z + 13 a z + 12 a z - a z + 6 a z + 23 a z +
7 3 9 3 11 3 2 4 4 4 6 4 8 4
> 3 a z - 11 a z + 3 a z - a z - 12 a z - 20 a z - 4 a z +
10 4 3 5 5 5 7 5 9 5 11 5 4 6
> 5 a z - 3 a z - 17 a z - 3 a z + 10 a z - a z + 4 a z +
6 6 8 6 10 6 5 7 7 7 9 7 4 8
> 11 a z + 5 a z - 2 a z + 5 a z + 2 a z - 3 a z - a z -
6 8 8 8 5 9 7 9
> 3 a z - 2 a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 2 2 1 1 2 2 2 3 2
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
4 2 20 8 18 8 18 7 16 6 14 6 14 5 12 5
q q q t q t q t q t q t q t q t
4 3 3 4 3 3 1 3
> ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- + t
12 4 10 4 10 3 8 3 8 2 6 2 6 4
q t q t q t q t q t q t q t q t |