© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n188
L11n188
L11n190
L11n190
L11n189
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n189

Visit L11n189's page at Knotilus!

Acknowledgement

L11n189 as Morse Link
DrawMorseLink

PD Presentation: X8192 X12,3,13,4 X22,10,7,9 X10,14,11,13 X5,16,6,17 X15,21,16,20 X21,19,22,18 X19,15,20,14 X2738 X4,11,5,12 X17,6,18,1

Gauss Code: {{1, -9, 2, -10, -5, 11}, {9, -1, 3, -4, 10, -2, 4, 8, -6, 5, -11, 7, -8, 6, -7, -3}}

Jones Polynomial: - q-11/2 - 3q-5/2 + 4q-3/2 - 5q-1/2 + 6q1/2 - 5q3/2 + 4q5/2 - 3q7/2 + q9/2

A2 (sl(3)) Invariant: q-18 + 2q-16 + 3q-14 + 2q-12 + 2q-10 + 3q-8 - q-6 - 2q-2 - 2 - q4 + 2q6 + q12 - q14

HOMFLY-PT Polynomial: a-3z + a-3z3 - 3a-1z - 3a-1z3 - a-1z5 + az-1 + 3az + 2az3 - 3a3z-1 - 5a3z - a3z3 + 2a5z-1 + a5z

Kauffman Polynomial: - a-4z2 + 3a-4z4 - a-4z6 + a-3z - 8a-3z3 + 11a-3z5 - 3a-3z7 + 3a-2z2 - 9a-2z4 + 11a-2z6 - 3a-2z8 + 2a-1z - 12a-1z3 + 11a-1z5 - a-1z9 + 1 + 11z2 - 25z4 + 18z6 - 4z8 - az-1 + az - az3 - 4az5 + 4az7 - az9 + 3a2 - 10a2z4 + 6a2z6 - a2z8 - 3a3z-1 + 10a3z - 11a3z3 + 3a3z5 + 3a4 - 7a4z2 + 3a4z4 - 2a5z-1 + 10a5z - 14a5z3 + 7a5z5 - a5z7

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 10           1
j = 8          2 
j = 6         21 
j = 4        32  
j = 2       32   
j = 0     133    
j = -2     34     
j = -4   122      
j = -6    3       
j = -8  11        
j = -101           
j = -121           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 189]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 189]]
Out[4]=   
PD[X[8, 1, 9, 2], X[12, 3, 13, 4], X[22, 10, 7, 9], X[10, 14, 11, 13], 
 
>   X[5, 16, 6, 17], X[15, 21, 16, 20], X[21, 19, 22, 18], X[19, 15, 20, 14], 
 
>   X[2, 7, 3, 8], X[4, 11, 5, 12], X[17, 6, 18, 1]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 2, -10, -5, 11}, 
 
>   {9, -1, 3, -4, 10, -2, 4, 8, -6, 5, -11, 7, -8, 6, -7, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(11/2)    3      4        5                     3/2      5/2      7/2    9/2
-q        - ---- + ---- - ------- + 6 Sqrt[q] - 5 q    + 4 q    - 3 q    + q
             5/2    3/2   Sqrt[q]
            q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -18    2     3     2     2    3     -6   2     4      6    12    14
-2 + q    + --- + --- + --- + --- + -- - q   - -- - q  + 2 q  + q   - q
             16    14    12    10    8          2
            q     q     q     q     q          q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 189]][a, z]
Out[8]=   
       3      5                                       3      3
a   3 a    2 a    z    3 z              3      5     z    3 z         3
- - ---- + ---- + -- - --- + 3 a z - 5 a  z + a  z + -- - ---- + 2 a z  - 
z    z      z      3    a                             3    a
                  a                                  a
 
             5
     3  3   z
>   a  z  - --
            a
In[9]:=
Kauffman[Link[11, NonAlternating, 189]][a, z]
Out[9]=   
                         3      5
       2      4   a   3 a    2 a    z    2 z             3         5
1 + 3 a  + 3 a  - - - ---- - ---- + -- + --- + a z + 10 a  z + 10 a  z + 
                  z    z      z      3    a
                                    a
 
             2      2                3       3
        2   z    3 z       4  2   8 z    12 z       3       3  3       5  3
>   11 z  - -- + ---- - 7 a  z  - ---- - ----- - a z  - 11 a  z  - 14 a  z  - 
             4     2                3      a
            a     a                a
 
               4      4                            5       5
        4   3 z    9 z        2  4      4  4   11 z    11 z         5
>   25 z  + ---- - ---- - 10 a  z  + 3 a  z  + ----- + ----- - 4 a z  + 
              4      2                           3       a
             a      a                           a
 
                                 6       6                7
       3  5      5  5       6   z    11 z       2  6   3 z         7    5  7
>   3 a  z  + 7 a  z  + 18 z  - -- + ----- + 6 a  z  - ---- + 4 a z  - a  z  - 
                                 4     2                 3
                                a     a                 a
 
              8            9
       8   3 z     2  8   z       9
>   4 z  - ---- - a  z  - -- - a z
             2            a
            a
In[10]:=
Kh[L][q, t]
Out[10]=   
    4      1        1        1       1       1       3       2     1    2
3 + -- + ------ + ------ + ----- + ----- + ----- + ----- + ----- + - + ---- + 
     2    12  6    10  6    8  4    8  3    4  3    6  2    4  2   t    4
    q    q   t    q   t    q  t    q  t    q  t    q  t    q  t        q  t
 
     3              2        2  2      4  2      4  3      6  3    6  4
>   ---- + 3 t + 3 q  t + 2 q  t  + 3 q  t  + 2 q  t  + 2 q  t  + q  t  + 
     2
    q  t
 
       8  4    10  5
>   2 q  t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n189
L11n188
L11n188
L11n190
L11n190